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1 Introduction

Right-skewed distributions pervade many aspects of economic life (Gabaix 2009, 2016).1 The Pareto distribution
is the standard model for analyzing these phenomena. This distribution has one parameter governing the fatness
of its right tail, the inverse tail index 𝜎. The higher 𝜎, the more mass is concentrated at the extreme end of the
distribution.

Recent theory and evidence, however, show that Pareto provides a poor fit to the data in many applications.
Blanchet, Fournier, and Piketty (2022) demonstrate that the predictions of Pareto for mean wealth and income
among the upper tail are heavily at odds with reality. In the city size literature, Eeckhout (2004, 2009) and Rossi-Hans–
berg and Wright (2007) have challenged the Pareto assumption, arguing for respectively log-normal and a non-spec–
ified log-concave distribution function. For firm size, Jones (2023) argues that even thin-tailed firm productivity
distributions can give rise to exponential growth, given the combinatorial nature of endogenous growth. Despite
these challenges, Pareto remains the default assumption in most analyses.

At face value, estimating the inverse tail index 𝜎 is straightforward. Let𝑊 be the variable of interest (say: wealth)
and let us assume that we analyze all observations above some lower bound, normalized to 1 without loss of gener–
ality.2 Then, the maximum likelihood estimator of 𝜎 is simply the mean of 𝑤 B ln𝑊 , see Hill (1975). However,
there has been widespread reluctance to use this estimator, maybe largely because this estimator "fits the data badly"
when used to predict expected wealth among the richest people, see Blanchet, Fournier, and Piketty (2022). Often,
mean log wealth exceeds unity. In that case, expected top wealth is infinite.

As an alternative, most empirical research uses log-rank regressions: the relation between the log rank in a sample
of the rich/cities/firms and log wealth (for the rich) or log size (for cities and firms) should be linear for a Pareto
distribution, see Rosen and Resnick (1980) for an early application. Scatter plots and the high R2-values of these
regressions, usually way above 95%, suggest that this relation is indeed linear, see Figure 1 for some examples. The
use of this tool, however, is unfortunate. The log rank is an order statistic. Its construction requires the researcher to
order the data by the magnitude of the variable of interest. This introduces correlation between observations, which
invalidates many standard techniques and causes the OLS coefficients to be biased. Gabaix and Ibragimov (2011) set
out to correct the log rank regression for this bias. One wonders why going the way of trying to correct an estimator
which is known to suffer from biases due to ordering of the data, while a consistent estimator for the tail index is
available. Might not be the problem that the starting point of a Pareto distribution for top wealth is at odds with the
data? If so, trying to correct a biased estimator of the Pareto coefficient might just ignore the source of the problem.

Our first contribution is that we provide conclusive evidence that top wealth is not Pareto distributed. We con–
struct test statistics based on ratios of log-wealth moments; under Pareto, these ratios converge to one regardless of
the inverse tail index 𝜎. Because Pareto implies an exponential distribution for ln𝑊 , all exponential moments ex–
ist, whereas Pareto moments larger than 𝜎−1 do not. Applying the second- and third-order moment-ratio tests to
the Forbes List of Billionaires for 18 regions (2001--2021), we reject Pareto for every region-year combination with
enough observations. A joint test across all combinations – allowing each combination to have its own tail index –
rejects Pareto even more decisively. We show that this rejection cannot be attributed to classical measurement error.

One might argue that this just implies that one has to dive deeper in the right tail before arriving at the Paretian

1. For example, heavy-tailed distributions feature prominently in the distributions of city-size (e.g. Gabaix 1999, Eeckhout 2004,Rossi-
Hansberg and Wright 2007), firm-size (Luttmer 2011; Autor et al. 2020; Jones 2023), CEO salaries (Gabaix and Landier 2008), income and
wealth (e.g. Atkinson, Piketty, and Saez 2011; Vermeulen 2018), and on financial markets (e.g. Huisman, Koedijk, Kool, and Palm 2001).

2. Any other positive number for the lower bound can be accounted for by dividing the data by this number.
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Figure 1: Spurious Log-Rank – Log-Size Regressions
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Notes: Figure shows Gabaix and Ibragimov (2011) regressions for the year 2019, for four
regions; see Table 3 for further details. All four regressions have very high R2s despite all
distributions being formally incompatible with a Pareto distribution, as measured by our
test statistics 𝑅𝑘 being below 1 in all cases.

tail, using the estimation method proposed by Clauset, Shalizi, and Newman (2009) and applied e.g. by Gaillard,
Hellwig, Wangner, and Werquin (2023), which estimates simultaneously the inverse tail index𝜎 and threshold above
which the upper tail of the distribution is reasonably close to Pareto. Two points invalidate this view. First, if the true
distribution were Pareto, log wealth would be exponential with a constant hazard rate; we observe no convergence
of the hazard rate to a constant at any threshold. Second, Gaillard, Hellwig, Wangner, and Werquin (2023) find that
approximately 12% of respondents lie above their estimated cutoff (based on consumption data rather than wealth).
Billionaires constitute roughly one in a million of the population, so the fraction above any plausible Pareto threshold
is far smaller; even this tiny fraction lies below the cutoff, implying Pareto would apply to essentially nobody.

Blanchet, Fournier, and Piketty (2022) acknowledge these empirical problems and respond by abandon para–
metric modeling, proposing a “tail-index curve” with a separate parameter for each income bracket. Our second
contribution is to show that this step is unnecessary. We test two alternative distributions for the Pareto/exponential
distribution: (i) log-normal/normal and (ii) Weibull/Gompertz for wealth and log wealth respectively, both trun–
cated at the lower support. Where the Pareto/exponential distribution has a single parameter, both alternatives have
two. We therefore need a second moment ratio statistic to test whether these alternatives fit the data. Again, we
use the moment ratio based on the second and third moment of log wealth. Both the normal and the Gompertz
distribution for log wealth predict the log moment ratios to be in a particular ratio to each other; this relation hap–
pens to be almost perfectly linear, for both the normal and Gompertz distribution. This is highly convenient for
the construction of a test statistic. The positive news is that the empirical moments do fit this linear relation for the
alternative distributions almost perfectly for all region-year combinations. The negative news is that both alterna–
tive distribution do. The linear relations between the log moment ratios almost coincide. The moment ratios do
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therefore not allow us to discriminate between the normal and Gompertz distributions.
Our third contribution is to offer a solution for this problem, using the distinct shapes of the candidates’ hazard

rates. The exponential distribution has a constant hazard rate, equal to the tail index 𝜎−1. The normal distribution
is characterized by an approximately linearly increasing hazard. Its two parameters determine the hazard’s level at the
lower bound and its slope. The Gompertz distribution, instead, is characterized an exponentially increasing hazard.
We nonparametrically estimate the empirical hazard rates and test by means of OLS which of the three candidate
distributions fits the data, again allowing for separate parameters for each region-year combination capturing the
level and the linear slope of the hazard rate. Unsurprisingly, this test strongly rejects the exponential distribution,
confirming the previous conclusion based upon the moment-ratio tests. However, contrary to the moment-ratio
test, the hazard rate test also strongly rejects the normal distribution: the second order term is clearly positive, in–
dicating that the hazard rate is convex. Apparently, where the test based on moment-ratios has insufficient power
in the extreme right tail, the hazard rate test is able to distinguish between both distributions. This test supports
our previous claim that the evidence is inconsistent with the convergence of the hazard rate to some constant, as is
required for convergence to the Pareto distribution.

Our results raise the question whether they are typical for the Forbes data on billionaires’ wealth or for the wealth
distribution in general, or that they apply more generally to other phenomena that have been presumed to be Pare–
tian. We present evidence for two other variables: city and firm size. The shape of the U.S. city size distribution is
subject to a long-standing debate. The default of Pareto (specifically Zipf) is assumed by e.g. Krugman (1996) and
Gabaix (1999), who use the 135 largest Metropolitan Statistical Areas. Eeckhout (2004, 2009) challenges this result,
and argues for log-normal. We find that even for the upper tail, Pareto is strongly rejected by our test-statistics and
that there is solid support for Weibull. The same applies to the U.S. firm size distribution. Again, this distribution
is typically assumed to be Pareto (e.g., Axtell 2001; Luttmer 2011). Again, we find overwhelming evidence against
Pareto and in favor of Weibull.

We conclude that Weibull must replace Pareto in many economic models. We explore some possible theoretical
rationalisations of this conclusion. For example, the Gompertz distribution figures in stochastic networks (Tishby,
Biham, and Katzav 2016). This model structure has interesting parallels with the variables we study; for instance,
city size is constrained by the land area or population already used by existing cities.

Related Literature: Our paper is related to three strands of literature. First, our paper adds to the literature on
tail index estimation. This literature, which arose as a consequence of the development of Extreme Value Theory
(e.g., Gumbel 1958; Balkema and De Haan 1974; Pickands 1975), is highly multidisciplinary and extensive in scope,
and we will not be able to do it justice here; see Bingham, Goldie, and Teugels (1989) and Beirlant, Goegebeur, Segers,
and Teugels (2006). Within the tail index estimation literature – reviewed in Fedotenkov (2020) – our work relates
most closely to estimation on the basis of moments of the log-density function (Hill 1975; Dekkers, Einmahl, and
De Haan 1989).

Second, we contribute to the study of heavy-tailed distributions within the field of economics. Examples of
heavy-tailed distributions abound (Gabaix 2009, 2016), ranging from the distributions of income and wealth (Atkin–
son, Piketty, and Saez 2011; Vermeulen 2018), city size (Gabaix 1999), firm size (Luttmer 2011; Autor et al. 2020),
and the cross-section of stock returns (Huisman, Koedijk, Kool, and Palm 2001). A lot of theoretical literature, how–
ever, simply assumes the Pareto distribution without properly testing this assumption, or looks at a log rank – log
size plot to conclude that a particular distribution looks Pareto-ish. Within this literature, our work relates to studies
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which question the Pareto assumption. Examples include Eeckhout (2004) and Rossi-Hansberg and Wright (2007)
for city size, Jones (2023) and Kondo, Lewis, and Stella (2023) for firm size, and Blanchet, Fournier, and Piketty
(2022) for income and wealth. Our work also relates to papers which use the heavy-tailedness of a distribution as a
basis to construct causal estimators of macroeconomic aggregates, such as Gabaix and Koijen (2023).

Finally, our paper relates to economic studies on the dynamics of size distributions. A theoretical basis for study–
ing the dynamics of top income and wealth is given by Gabaix, Lasry, Lions, and Moll (2016), who show that the
Bewley-Aiyagari-Huggett random-growth models of wealth accumulation (Benhabib and Bisin 2018) fail to deliver
Pareto tails with the same speed as observed in the data. Their framework has spurred much theoretical and empirical
work. Similarly, Luttmer (2011) shows that only deviations from Gibrat’s Law (i.e., firm growth is not independent
of firm size) can generate a Pareto-shaped distribution of firms within a reasonable timeframe. Perhaps closest to
our focus on billionaires is Gomez (2023), who uses tools from stochastic calculus to decompose the growth of the
American Forbes 400 wealth share into growth by incumbents, growth by new entrants, and entry/exit effects; and
Blanchet (2022), who also uses empirical data on income and wealth to study stochastic properties of economic
models. In a companion paper, we use our Weibull framework to study the dynamics of billionaire numbers since
2000, finding that a simple model can account for most of the time-series and cross-sectional variation (Teulings and
Toussaint 2024). Since the number of billionaires is more sensitive to variation in the lower bound under Weibull,
an increase in wealth in a given region (and hence a decline in the effective lower bound) will lead to a larger increase
in billionaire numbers than predicted by Pareto.

Paper Outline: The rest of this paper is structured as follows. Section 2 presents our framework. In Section 3,
we discuss our main data, the Forbes List of Billionaires. Section 4 present the empirical results for the test of the
Pareto assumption, and our tests to discriminate between log-normal and Weibull. In Section 5, we further apply
our framework to cities and firms. Section 6 concludes.

2 Framework

2.1 Candidate distributions

Consider a random variable𝑊 (stochastic variables will be underlined) with a support [1,∞); the normalization of
the lower support to one is without loss of generality. Let 𝑤 B ln𝑊 be the corresponding log, hence with a support
[0,∞). To economize on notation, we suppress the support in what follows, but all moments and functions of
moments we present are conditional on𝑊 ≥ 1 or 𝑤 ≥ 0.

Our first candidate is the Pareto distribution with a single parameter, the inverse tail index 𝜎 > 0. When 𝑊

follows a Pareto distribution, its log 𝑤 follows an exponential distribution. The literature often uses its inverse 𝜎−1,
which is commonly referred to as the tail index or Pareto coefficient (Jones 2015, Gabaix 2009, 2016). Both con–
ventions have advantages and disadvantages. Our choice to work with 𝜎 rather than its inverse is motivated by the
fact that 𝜎 has a common interpretation as a scale parameter of 𝑤 that applies to all three candidate distributions
that we consider.

If 𝜎 = 1, the Pareto distribution specializes to the Zipf distribution. The first row of Table 1 shows the coun–
ter-distribution for Pareto; for the Zipf distribution, this expression simplifies to Pr[𝑊 ≥ 𝑊] = 𝑊−1. This expres–
sion is easy to interpret, since it predicts the probability of a “large” observation to scale with size like a power law.

4



Table 1: Three right tail distributions and the the corresponding distribution for its log

Level (𝑊) Log (𝑤)

Distribution Function Distribution Function
Counter-distribution Density Counter-distribution Density

Pareto 𝑊−1/𝜎 1
𝜎
𝑊− 1+𝜎

𝜎 exponential e−𝑤/𝜎 1
𝜎
e−𝑤/𝜎

log-normal Φ(−𝜓−ln𝑊/𝜎)
Φ(−𝜓)

𝜙 (𝜓+ln𝑊/𝜎)
𝜎𝑊Φ(−𝜓) normal

Φ(−𝜓− 𝑤
𝜎 )

Φ(−𝜓)
𝜙(𝜓+𝑤

𝜎 )
𝜎Φ(−𝜓)

Weibull e−𝜓(𝑊1/𝜎−1) 𝜓

𝜎
𝑊

1−𝜎
𝜎 e−𝜓(𝑊1/𝜎−1) Gompertz e−𝜓

(
e
𝑤
𝜎 −1

)
𝜓

𝜎
e
𝑤
𝜎
−𝜓

(
e
𝑤
𝜎 −1

)
Notes: 𝜎 > 0 and 𝜓 > 0. Φ (·) and 𝜙 (·) are the distribution and density function, respectively, of the standard normal distribution.

This simple rule, together with its apparent fit of the distribution of the right tail of many empirical phenomena, has
contributed to the popularity of Pareto.

Table 1 compares the Pareto distribution with two alternatives: the log-normal and the Weibull distribution,
both left truncated at𝑊 = 1. Both distributions have one additional parameter beyond the scale parameter 𝜎. This
parameter,𝜓, measures the skewness of the distribution. The log of a log-normally distributed variable is distributed
normally, the log of a variable with a Weibull distribution has a Gompertz distribution; both distributions are left
truncated at𝑤 = 0. The Gompertz distribution is less well known in economics, but commonly used in demography
to model life expectancy as a function of age.3

2.2 Moments and Specification Testing

Let 𝑥 B 𝑤/𝜎 be the standardized version of the log transform 𝑤. As can be checked easily by substituting 𝑤/𝜎
for 𝑥 in the expressions for the counter-distribution function in Table 1, this function does not depend on the scale
parameter 𝜎 anymore. Evidently, then the same must apply to the corresponding density function, as this is its
derivative with respect to 𝑥. Define MX

𝑘
(𝜎, 𝜓) as the non-central moment of distribution X, RX

𝑘
(𝜓) as its nor–

malized moment ratio, and HX (𝑤, 𝜓) as its hazard rate

MX
𝑘
(𝜎, 𝜓) B E

[
𝑤𝑘

]
= 𝜎𝑘E

[
𝑥𝑘

]
,

RX
𝑘
(𝜓) B

E
[
𝑤𝑘

]
𝑘 !E

[
𝑤
] 𝑘 =

E
[
𝑥𝑘

]
𝑘 !E

[
𝑥
] 𝑘 ,

HX (𝑤, 𝜎, 𝜓) B −
d Pr

[
𝑤 > 𝑤

]
/d𝑤

Pr
[
𝑤 > 𝑤

] = −𝜎
d Pr

[
𝑥 > 𝑥

]
/d𝑥

Pr
[
𝑥 > 𝑥

] ,

where 𝑘 ≥ 1 is an integer and where X ∈ {E,N ,G} for the exponential, normal, and Gompertz distribution
respectively. While the moments MX

𝑘
(𝜎, 𝜓) depend on both 𝜎 and 𝜓, the moment ratio RX

𝑘
(𝜓) only depends

on 𝜓. This is the first advantage of focusing on the distribution of the log transform 𝑤 rather than the original

3. The Gompertz distribution is identical to the counter-Gumbel distribution: if 𝑤 is Gompertz, −𝑤 is Gumbel. There is some confusion in
the literature about the definition of the Gompertz distribution, where Gompertz is sometimes defined as Gumbel; see Kleiber and Kotz (2003),
following Ahuja and Nash (1967). If 𝑤 is Gumbel, 𝑊 is inverse-Weibull or Frèchet. The confusion is permeated on Wikipedia, which gives
our definition for Gompertz but then claims that the exponent of Gompertz is inverse-Weibull, citing Kleiber and Kotz (2003). We follow the
definition used in demography, which implies 𝑊 to be (truncated-)Weibull. We thank Christian Kleiber for helpful conversations on this point.
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variable𝑊 : one can compute a moment ratio directly from the data of which the value does not depend on the scale
parameter 𝜎. This is an important advantage when it comes to testing the shape of empirical distributions.

Table 2: Properties of MX
𝑘
(𝜎, 𝜓), RX

𝑘
(𝜓), and HX (𝑥, 𝜓)

Distribution
Statistic exponential normal Gompertz

MX
𝑘
(𝜎, 𝜓) 𝜎𝑘𝑘 ! Appendix 𝜎𝑘ℎ𝑘 (𝜓)

RX
𝑘
(𝜓) 1 Appendix ℎ𝑘 (𝜓)

𝑘!e𝑘𝜓Ei(𝜓)𝑘

lim𝜓→∞ RX
𝑘
(𝜓) 1 1 1

lim𝜓→0 RX
𝑘
(𝜓) 1 Appendix 𝑘 !−1

HX (𝑤, 𝜎, 𝜓) 1
𝜎

1
𝜎
Λ

(
𝜓 + 𝑤

𝜎

)
�

𝜓

𝜎
+ 𝑤

𝜎2
𝜓

𝜎
e𝑤/𝜎

Notes: Ei(·) stands for the exponential integral; Λ(𝑥) B 𝜙(𝑥)/Φ(−𝑥) is the inverse
Mills’ ratio. The derivation of these expressions is in the Appendix.

Table 2 summarizes the moment functions of the three candidate distributions of 𝑥 B 𝑤/𝜎, where we use for
the moments of the Gompertz distribution:

ℎ𝑘 (𝜓) B 𝑘e𝜓
∫ ∞

0
𝑥𝑘−1 exp (−𝜓e𝑥) d𝑥,

ℎ1 (𝜓) = e𝜓Ei (𝜓) ,

see the Appendix for the derivation. The expressions forMN
𝑘
(1, 𝜓) provide little insight and are therefore relegated

to the Appendix.
The moments exist for all three candidate distributions for all admissible values of the parameters𝜎 > 0 and𝜓 >

0. Though all moments of 𝑊 exist for all admissible parameter values for the log-normal and Weibull distribution,
this is not the case for the Pareto distribution, for which the moments do not exist for 𝑘 ≥ 𝜎−1. This is the second
advantage of focusing on the log transform 𝑤 rather than 𝑊 . Hence, we will work with the log transform 𝑤 and its
distributions – exponential, normal, and Gompertz – from now on.

Table 2 shows that for the exponential distribution, the moment ratio RE
𝑘
(𝜓) is equal to unity for all 𝜓 and 𝑘 .

This is not the case for the normal and Gompertz distribution, where RX
𝑘
(𝜓) converges to unity for 𝜓 → ∞ only,

for all 𝑘 and for X ∈ {N ,G}. For 𝜓 finite, RX
𝑘
(𝜓) is less than one and a declining function of 𝑘 .

The reason that the moment RX
𝑘
(𝜓) converges to unity for the normal and Gompertz distribution for 𝜓 → ∞

is that their moments MX
𝑘
(𝜎, 𝜓) converge to the moments of the exponential distribution in this limit. In this

sense, these distributions have an ‘asymptotic Pareto/exponential tail’. However, while the moments converge to
the exponential distribution, the hazard rate HX (𝑤, 𝜎, 𝜓) does not. While H E (𝑤, 𝜎, 𝜓) = 𝜎−1 for all 𝑤 for the
exponential distribution, HX (𝑤, 𝜎, 𝜓) is increasing in the limit for 𝜓 → ∞ for both the normal and Gompertz
distribution. In this sense, these distributions do therefore not have an ‘asymptotic Pareto/exponential tail’. The
reason that the moments of both distributions nevertheless converge to those of the exponential distribution can be
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seen from the survival probability

Pr
[
𝑤 > 𝑤

]
= exp

[
−

∫ 𝑤

0
HX (𝑧, 𝜎, 𝜓) d𝑧

]
� exp

[
−𝑤HX (0, 𝜎, 𝜓)

]
,

where the latter approximation holds for small 𝑤. For high 𝜓, the initial hazard HX (0, 𝜎, 𝜓) is that high, that even
for small 𝑤, the survival probability is low such that there are not enough survivors for the subsequent increase in
the hazard to have a substantial effect on the moments. Therefore, only the inital hazard matters, just as in the case
of the exponential distribution.

Much of the literature that uses Pareto distributions as a benchmark does so because many stochastic processes
are argued to have an ‘asymptotic Pareto tail.’ This claim is based on a concept from extreme-value theory called
regular variation, which ensures that a function behaves like a Pareto distribution in the limit (cf. Benhabib and
Bisin 2018; Bingham, Goldie, and Teugels 1989). Formally, a function 𝑓 (𝑥) is called regularly varying if

lim
𝑥→∞

𝑓 (𝑥𝑦)
𝑓 (𝑦) = 𝑥−1/𝜎 , ∀𝑥 > 0. (1)

The interest in Pareto has therefore not only arisen because of its simple theoretical properties, but also because it
seems to emerge as the stationary distribution for many stochastic processes. Gabaix (2009) gives many examples of
diffusion processes which lead to Pareto in the limit. In general, these processes are variations on random growth
models (e.g., geometric Brownian motions), with some frictions added to stabilize the distribution.

There is a tight link between convergence to Pareto and the decay of the distribution, which is governed by the
hazard rate of its log-transform. Contrary to the Gompertz distribution (the log transform of Weibull) the hazard
rate of the exponential distribution (the log transform of Pareto) is constant and memoryless: it has a constant hazard
rate regardless of the choice of lower bound: H E (𝑤, 𝜎, 𝜓) = 𝜎−1. It can be shown that a distribution is fat-tailed
if and only if the hazard rate of its log-transform converges to a constant (Beirlant, Goegebeur, Segers, and Teugels
2006). Since its hazard rate is constant, the exponential distribution satisfies this criterion, while the normal and
Gompertz distribution do not, even while their moments converge to exponential distribution as explained before.
The claim that a distribution converges to Pareto/exponential when far enough down into the right tail is therefore
misleading: when it applies to the moments, it might not apply to the hazard rates.

The expressions for hazard rates in Table 2 show that the Gompertz distribution is even thinner tailed than the
normal: its hazard rates increases exponentially in 𝑤, while that of the normal distribution increases only linearly.
This analysis provides a cautionary tale for our ability to discriminate empirically between both distributions. Seen
through the lens of the hazard rates, the differences between the exponential distribution on the one hand and the
normal and Gompertz on the other hand regards the first derivative of the hazard rate: it is zero for the exponential
distribution, while it is positive for normal and Gompertz. The difference between the latter two regards its second
derivative: it is asymptotically zero for the normal distribution, while it is positive for Gompertz. Establishing this
second derivative empirically is a challenge, as it relies on data points far down in the right tail.
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2.3 Testing

Let 𝑀𝑘 and 𝑅𝑘 be the sample moments and their ratios corresponding to the definitions ofMX (𝜎, 𝜓) andRX (𝜓):

𝑀𝑘 B 𝑤𝑘 = 𝜎𝑘𝑥𝑘 ,

𝑅𝑘 B
𝑤𝑘

𝑘 !𝑤𝑘
=

𝑥𝑘

𝑘 !𝑥𝑘
,

where a bar on top of a variable denotes its sample mean, calculated from a sample of size 𝑁 . 𝑀𝑘 and 𝑅𝑘 do not
depend on parameters can therefore be calculated directly from data on 𝑤.

Since the moment ratios RE
𝑘
(𝜓) for the exponential distribution are equal to one for all 𝑘 , the values for 𝑅𝑘 are

a suitable starting point for testing whether the data are drawn from an exponential distribution. We give a general
expression for the asymptotic variance of 𝑅𝑘 in the Appendix. For X = E, plim (𝑅𝑘) = 1 for all 𝑘 and the variance
specializes into a simple expression:

plim (𝑁Var [𝑅𝑘]) =
(2𝑘)!
𝑘 !2

− 𝑘2 − 1, (2)

plim (𝑁Var [𝑅1]) = 0, plim (𝑁Var [𝑅2]) = 1, plim (𝑁Var [𝑅3]) = 10.

We present the variance of 𝑅𝑘 for 𝑘 = 1 as a consistency check; since 𝑅1 = 1 by definition, its variance must be zero.
Since RE

𝑘
(𝜓) does not depend on any parameter, one moment ratio 𝑅𝑘 suffices to perform this test. Though the

higher asymptotic variance of 𝑅𝑘 for higher 𝑘 suggests that 𝑅2 has most discriminating power, one can use any 𝑘 .
We use the expressions for Var [𝑅2] and Var [𝑅3] in Section 4 to test whether the realisations of the moment ratios
𝑅2 and 𝑅3 are consistent with the data being drawn from an exponential distribution.

When this hypothesis is rejected, the moments 𝑅𝑘 can then be used to test whether the data are drawn from a
normal or Weibull distribution. Since these distributions have an additional parameter 𝜓, this test requires moment
ratios 𝑅𝑘 for two values of 𝑘 . Let 𝜓X

𝑘
(𝑅𝑘) for 𝑘 ≥ 2 be the inverse function of RX

𝑘
(𝜓), such that

𝜓X
𝑘

(
RX

𝑘
(𝜓)

)
= 𝜓.

If the distribution of 𝑤 is indeed X with parameter 𝜓, then 𝑅𝑘 is a consistent estimator of RX
𝑘
(𝜓) and hence

𝜓X
𝑘
(𝑅𝑘) is a consistent estimator of 𝜓. In the Appendix, we show that for the normal distribution, 𝜓N

2 (𝑅2) is
the maximum likelihood estimator of 𝜓. Such a simple equivalence does not apply for the Gompertz distribution,
but this does not matter for the test we propose. Given that both 𝜓X

𝑘
(𝑅𝑘) and 𝜓X

𝑚 (𝑅𝑚) for 2 ≤ 𝑘 < 𝑚 are
consistent estimates for 𝜓, 𝜓X

𝑘
(𝑅𝑘) and 𝜓X

𝑚 (𝑅𝑚) must be asymptotically equal and hence 𝜓X
𝑘
(𝑅𝑘) − 𝜓X

𝑚 (𝑅𝑚)
must be asymptotically equal to zero. In practice, our test statistic takes an even simpler form. We can use the equality
𝜓X
𝑘

[
RX

𝑘
(𝜓)

]
= 𝜓X

𝑚

[
RX
𝑚 (𝜓)

]
for establising a direct functional relation between RX

𝑘
(𝜓) and RX

𝑚 (𝜓) :

RX
𝑘,𝑚

(𝑅) B RX
𝑘

[
𝜓X
𝑚 (𝑅)

]
.
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Our argument implies that if the distribution of 𝑤 is indeed X, the following relation holds:

plim
[
𝑅𝑘 − RX

𝑘,𝑚
(𝑅𝑚)

]
= 0.

Empirically, we shall find values for 𝑅2 mostly in the range 𝑅2 ∈ (0.75, 0.90), which roughly corresponds to
𝜓 ∈ (−0.5, 2) and 𝜓 ∈ (1, 8) for the normal and Gompertz distribution respectively. It turns out that the relation
between lnRX

2 (𝜓) and lnRX
3 (𝜓) implied by RX

2,3
[
RX
3 (𝜓)

]
is almost perfectly linear for this range of 𝜓. Using

this almost perfect log linearity, we obtain a very simple test statistic:

plim
(
ln 𝑅2 − 𝜆X ln 𝑅3 − 𝜆X

0

)
� 0, (3)

𝜆N = 0.390, 𝜆N
0 = 0.011,

𝜆G = 0.404, 𝜆
G
0 = 0.027.

Appendix Figures B.2 and C.2 plot lnRX
2 (𝜓)−𝜆X lnRX

2 (𝜓)−𝜆X
0 for both distributions. The deviation is less than

0.001 for the relevant ranges for both distributions. This is far smaller than the standard deviation in the estimated
ratios for sample sizes of 1000 observations or more, see the Appendix for an expression for this standard deviation.

Note that these linear functions are very similar for both distributions. This underscores our cautionary tale:
distinguishing between both distributions might be a hard task.

3 Data

For our main application, we use the Forbes List of Billionaires for the years 2001–2021. The dataset provides the
names of billionaires and their net worth, country of origin, age and citizenship. We classify billionaires according
to their citizenship.

Forbes calculates net worth at the individual level, but aggregates family wealth, unless each family member
has USD 1 billion or more after the split. On the one hand, as observed by Piketty (2014), this is likely to create
an upward bias on individual fortunes around the threshold. On the other hand, given the difficulty for Forbes to
estimate wealth components that are not publicly observed, some fortunes may well be biased downward. Moreover,
they use available documentation and sometimes data provided by billionaires themselves to estimate their net worth.
The number of billionaires and their wealth is likely to be underestimated in less developed countries or for wealth
derived from nefarious activities. Ex ante, it is unclear which direction the measurement error goes; “rounding up”
to 1 billion may put too much weight on the bottom of the list, whereas the difficulty of measuring liabilities and
other poorly observable wealth components may overstate wealth for fortunes at the top. We follow the existing
literature which uses rich lists like Forbes, as other sources are likely to underestimate the number of billionaires
(Vermeulen 2016; Novokmet, Piketty, and Zucman 2018; Piketty, Yang, and Zucman 2019; Gomez 2023).

We cluster countries in 18 regions, see Table 3. The guiding principle for this clustering is to merge countries that
are geographically connected and close in terms of GDP per capita, and have sufficient billionaire numbers to make
the estimation of our statistics precise. As a rough threshold for the minimum number of billionaires for a region
we use 40 billionaires in 2019. Countries that cannot easily be included in a region are excluded from the region
classification. Hence, the region classification excludes some countries; the super-region classification printed in
bold covers all countries. Therefore, a super-region can have more billionaires than the sum of its constituent regions.
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The super-regions China and India consist of one country and are therefore also classified as a region. The Rest of
the World has fewer than 40 billionaires in 2019. Moreover, this super-region is rather heterogeneous, with some
really poor countries in Sub-Saharan Africa, as well as Afghanistan and Bangladesh, but also some middle income
countries like South Africa. We therefore exclude it from our analysis.

Table 3: Region Classification & Descriptive Statistics

Region Classification Statistics (Average 2001–2021)

(Super–)Region Area 𝑅2 𝑅3 𝑤 𝑁/𝐿 𝑁

North America US and Canada 0.866 0.688 0.92 1.35 472
– U.S. 0.87 0.697 0.923 1.41 443
– Canada 0.797 0.564 0.894 0.832 29.2

Europe excl. former USSR but incl. Baltics 0.781 0.516 1.02 0.595 264
– Germany 0.722 0.43 1.12 0.901 74.1
– British Islands U.K. + Ireland 0.793 0.525 0.828 0.589 40.6
– Scandinavia Sweden + Denmark + Norway + Finland 0.759 0.461 1.17 1.17 30.6
– France incl. Monaco 0.779 0.502 1.27 0.402 26.5
– Alps Switzerland + Austria + Liechtenstein 0.658 0.342 1.05 1.49 25
– Italy 0.792 0.535 1.01 0.405 24.1

China excl. Taiwan, incl. Hong Kong 0.929 0.771 0.794 0.135 188

East Asia Asia East of India and South-East of China; incl. Australia 0.799 0.533 0.798 0.175 135
– Southeast Asia Thailand + Malaysia + Singapore 0.741 0.447 0.923 0.3 31.1
– Asian Islands Taiwan + Philippines + Indonesia 0.766 0.49 0.727 0.101 38.5
– South Korea 0.843 0.63 0.673 0.368 18.7
– Japan 0.819 0.562 0.875 0.209 26.6
– Australia 0.81 0.537 0.736 0.802 19

India 0.824 0.582 0.964 0.043 56.1

Central Eurasia former USSR except Baltics 0.851 0.61 0.919 0.371 78
– Russia 0.843 0.597 0.956 0.478 68.8

South America incl. middle America and Mexico 0.821 0.597 0.964 0.0978 59.8
– Brazil 0.809 0.56 0.861 0.148 30

Middle East Middle East incl. Turkey and Egypt excl. Iran 0.858 0.635 0.765 0.568 60.4
– Israel + Turkey 0.891 0.652 0.585 0.43 36.2

Rest of World mainly Africa excl. Egypt, incl. Iran, Afghanistan, Pak-
istan, Bangladesh

0.743 0.436 0.961 0.00556 11.8

World 0.856 0.647 0.896 0.183 1325

Notes: Super-regions may include billionaires from countries not part of their constituent regions. China and India count both as regions and
super-regions. 𝑁 = total number of billionaires; 𝐿 is total population in millions; 𝑤 = mean log wealth; 𝑅2 and 𝑅3 are the normalized variance
and skewness of mean log wealth.

Table 3 provides summary statistics for all regions and super-regions. We report average numbers for 𝑅2 and
𝑅3, and 𝑤, and the average number of billionaires (both raw and normalized by total population in millions). The
summary statistics immediately reveal some striking facts. First, mean log wealth in Europe exceeds unity, implying
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that E
[
𝑊

]
does not exist for the Pareto distribution. Second, both 𝑅2 and 𝑅3 are consistently smaller than one in

all regions, contradicting the prediction of a Pareto distribution.

4 Testing the Candidate Distributions

4.1 Pareto/Exponential

This section tests the Pareto hypothesis using the moment ratio test discussed in Section 2. We have 18 regions × 21
years = 378 region-year combinations available for estimation. We calculate 𝑅2 and 𝑅3 for each observation. The
variances of 𝑅2 and 𝑅3 are predicted to be 𝑁−1 and 10𝑁−1 respectively, where 𝑁 is the number of observations in
each region-year combination, see equation (2). Hence, the model exhibits heteroskedasticity and OLS is inefficient.
We correct for this by using weighted least squares (WLS) with

√
𝑁 as weights. We test whether the intercept of this

regression is equal to one and whether the RMSE is in accordance with its predicted value of one for 𝑅2 and
√
10 for

𝑅3.
This test procedure implies that we allow the scale parameter 𝜎 to vary between region-year combinations. This

hypothesis nests the stricter hypothesis that all region-year combinations share a common 𝜎. Our procedure offers
a simultaneous test for all regions. The simultaneity of this test for all 75 region-year combinations greatly increases
its power, compared to testing all 75 combinations separately.

The scale parameters may or may not be correlated between region-year combinations, e.g. within years or re–
gions. Quite likely, they are. For example: the US has a higher Pareto coefficient and hence a lower scale parameter
than most European countries during the whole observation period, causing the values of 𝜎 to be correlated over
time. This correlation is irrelevant for our procedure, since the randomness that is accounted for in our test-proce–
dure comes from the individual observations on billionaires’ wealth within each region-year combination with its
own scale parameter 𝜎. In panel data wording: the variation in 𝜎 is dummied out. In the extreme case where the
scale parameters are identical for all combinations (and hence perfectly correlated), our estimations procedure is still
valid, although not fully efficient, since we ignore the information that inverse tail index parameters 𝜎 are the same
for all combinations.

Table 4 reports the results. We clearly reject the null that 𝑅2 = 𝑅3 = 1. The intercepts are highly significantly
different from one. This remains the case when we do the following robustness checks: drop region-year combina–
tions with fewer than 64 billionaires to reduce the small-sample bias in 𝑅2 and 𝑅3 (column (2) and (5)) and further
drop the bottom and top 5% of observations for 𝑅2 and 𝑅3 as a robust regression (column (3) and (6)).

We also report the theoretical root mean squared error (RMSE) derived from equation 2, except for column (3)
and (6) where the selective dropping of observations invalidates the prediction for the RMSE. If all variation in 𝑅2

and 𝑅3 were sampling variation (with replacement), the observed RMSE should be equal to the theoretical RMSE,
which is equal to one for 𝑅2 and

√
10 for 𝑅3. This is clearly not the case. Using the sample with 𝑁 ≥ 64, the observed

RMSE is 31% of the theoretical RMSE for 𝑅2 and 0.54/
√
10 ≈ 17% for 𝑅3. The lower RMSE therefore is further

evidence that the actual distribution is not exponential.
Figure 2 shows 𝑅2 and 𝑅3 for all region-year combinations: the great majority is smaller than unity. This holds

true when we restrict attention to these combinations with more than 64 billionaires and (obviously) when we fur–
ther drop the top and bottom 5% of observations. The main takeaway from Table 4 and Figure 2 is that Pareto
distribution is strongly rejected across all regions and years.
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Figure 2: Distribution of Test Statistics 𝑅2 and 𝑅3
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(a) 𝑅2, Full Sample
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(b) 𝑅3, Full Sample
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(c) 𝑅2, 𝑁 ≥ 64
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(d) 𝑅3, 𝑁 ≥ 64
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(e) 𝑅2, 𝑁 ≥ 64, trimmed
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(f) 𝑅3, 𝑁 ≥ 64, trimmed

Notes: Figures show the distribution of 𝑅2 and 𝑅3, with all observation-years pooled. The red line indicates the
predicted value under the null that wealth is Pareto-distributed, i.e., 𝑅2 = 𝑅3 = 1. All counts are weighted by the
number of billionaires. Panels (a) and (b) use the full sample, panels (c) and (d) drop observations with fewer than
64 billionaires, and (e) and (f) further drop the top and bottom 5% of observations from (c) and (d).
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Table 4: WLS Regressions, Pareto Test

Dependent Variables: 𝑅2 𝑅3

Model: (1) (2) (3) (4) (5) (6)

Variables
Constant 0.82∗∗∗ 0.86∗∗∗ 0.86∗∗∗ 0.59∗∗∗ 0.66∗∗∗ 0.65∗∗∗

(0.005) (0.02) (0.01) (0.008) (0.03) (0.02)

Weights
√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

Fit statistics
Observations 378 75 67 378 75 67
RMSE 0.274 0.309 0.270 0.451 0.540 0.467
Theoretical RMSE 1 1

√
10

√
10

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Table reports regressions using the square root number of billionaires in a region–year com-
bination as weights. Parentheses underneath point estimates denote Driscoll and Kraay (1998) stan-
dard errors. Specifications (2) and (5) drop combinations with fewer than 64 billionaires; specifica-
tions (3) and (6) further drop combinations in the top and bottom 5% of the dependent variable.
The theoretical root mean squared error is derived from equation 2.

What about measurement error? Although the Forbes list is widely used in research (e.g., Gomez (2023)), its
deficiencies as a data source are well known. Could our rejection of Pareto be driven by measurement error? We
argue that this is highly unlikely. Let 𝑣 be a normally distributed classical measurement error with zero mean and
variance of 𝜃2 and Cov

[
𝑤, 𝑣

]
= 0. Observed log wealth satisfies 𝑤 B 𝑤 + 𝑣. The density function 𝑓 (𝑤) of

observed log wealth reads

𝑓 (𝑤) =
∫ ∞

−∞
𝜃−1e−(𝑤−𝑣)/𝜎𝜙

( 𝑣
𝜃

)
d𝑣 = e−𝑤/𝜎

∫ ∞

−∞
𝜃−1e𝑣/𝜎𝜙

( 𝑣
𝜃

)
d𝑣 = e(𝜃/𝜎)2/2e−𝑤/𝜎 . (4)

The tail index of actual and observed log wealth is therefore the same, since the proportional constant e(𝜃/𝜎)2/2 > 1
drops out when normalizing the density function as to integrate to one.

Intuitively, measurement error causes some individuals’ log wealth to be overreported and other individuals’
wealth to be underreported. Focus on one particular level of observed log wealth 𝑤 and on one particular level of
the absolute value of the measurement error |𝑣 |. Since the density function of 𝑤 is declining, there are more people
with actual log wealth 𝑤 = 𝑤 − |𝑣 | whose wealth gets overreported to be 𝑤, than there are people with log wealth
𝑤 = 𝑤 + |𝑣 | whose wealth gets underreported. Hence, the density of the right tail of the distribution of observed log
wealth is increased by some proportional factor compared to the distribution of actual log wealth. However, since
the ratio of underreporters to overreporters is the same for all 𝑤 due to the exponential distribution of actual log
wealth 𝑤, this constant of proportionality is the same for all 𝑤. Hence, the moment ratios 𝑅𝑘 remain unaffected.
Measurement error does therefore not affect our test procedure.4

The common procedure of using rank-size regressions (Gabaix and Ibragimov 2011), however, is biased under

4. Note that this argument applies only to the extreme right tail of the distribution of wealth. As soon as 𝑤− |𝑣 | falls below the lower support
of 𝑤, the argument no longer applies. However, the literature typically assumes that the Pareto tail would start at a threshold much below a billion
USD, perhaps at several million USD (e.g., Albers, Bartels, and Schularick (2022) assume it starts at the 99th percentile), so measurement error
will not affect the distribution of billionaires’ wealth.
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measurement error. First, mismeasured 𝑤 causes the OLS estimate for 𝜎−1 to be attenuated toward zero. A subtler
problem is that this method depends on order statistics, and in effect assumes these are known perfectly. In empirical
applications, however, measurement error introduces uncertainty about precise rankings, making order statistics an
object to be estimated rather than something known a priori (Mogstad, Romano, Shaikh, and Wilhelm 2023). This
introduces additional uncertainty into the estimator.

Gaillard, Hellwig, Wangner, and Werquin (2023) applied the method of Clauset, Shalizi, and Newman (2009)
to consumption data. This method is based on the assumption that only the data above some threshold fit the Pareto
distribution. The method sets out to simultaneously estimate this threshold and the inverse tail index 𝜎. They find
that there is indeed a Pareto tail that applies to 12% of the population. Our data on billionaires cover a fraction of
roughly one in a million of the richest people on earth. If the Pareto tail does not apply to this highly selective subset
of people, one may wonder to whom it may then apply.

4.2 Normal and Gompertz: Moment Test

Having rejected the Pareto distribution, we turn our attention to the normal and Gompertz distribution. We focus
on the 75 region-year combinations with more than 64 observations. We run a WLS regression of ln 𝑅2−𝜆X ln 𝑅3−
𝜆X
0 for X ∈ (N ,G) on an intercept, using

√
𝑁 as weights. The theoretical prediction is that this intercept is not

significantly different from zero. Again, this is a more lenient hypothesis than that all observations are drawn from
the same distribution. We allow 𝜎 and 𝜓 to vary between region-year combinations. The tested hypothesis is just
that the distribution is either normal or Gompertz for all combinations, where its parameters 𝜎 and 𝜓 are allowed
to vary between combinations. Again, the simultaneity of this test for all region-year combinations greatly increases
its power.

Table 5: ln 𝑅2 − 𝜆 lnX 𝑅3, normal vs. Gompertz

Dependent Variables: ln 𝑅2 − 𝜆N ln 𝑅3 ln 𝑅2 − 𝜆G ln 𝑅3

Model: (1) (2) (3) (4)

Variables
Constant 0.004 0.002 0.002 -0.006∗∗

(0.002) (0.003) (0.002) (0.002)

Weights
√
𝑁

√
𝑁

√
𝑁

√
𝑁

Fit statistics
Observations 378 75 378 75
RMSE 0.072 0.086 0.059 0.069

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Driscoll-Kraay (L=2) standard-errors in parentheses

Table 5 reports the results. Column (1) and (3) uses the full set of region-year combinations, column (2) and (4)
use only the 75 combinations with more than 64 observations. The intercept is not significantly different from zero
for three out of four cases, and in the fourth case the coefficient is very small in magnitude. Hence, we conclude that
either normal or Gompertz fits the data well. Based on Table 5, there is little to choose between the two distributions:
normal fares best in the sample with at least 64 observations, yet Gompertz fits almost perfectly in the full sample.
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At first sight, this result seems to support a negative conclusion for our ambition to establish a common dis–
tribution for log wealth. However, we have reasons for a more positive evaluation. Figure 3 plots the functions
lnRX

2 (𝜓) − 𝜆X lnRX
3 (𝜓) − 𝜆X

0 in the {ln 𝑅2, ln 𝑅3} space for both distributions X ∈ {N ,G}, as well as their
realisations for {ln 𝑅2, ln 𝑅3} for the 75 region-year combinations with more than 64 observations. Figure 3 justi–
fies two conclusion. First, it underscores the conclusion from the discussion of equation (3) that the relations for
the normal and Gompertz distribution almost coincide, dwarfing the hope that this test can discriminate between
both distributions. However, the individual realisations for {ln 𝑅2, ln 𝑅3} are closely lined up to the theoretical re–
lation. On an individual basis, many region-year combinations are less than two standard deviations of the RMSE
away from zero. The results seem to be somewhat more favorable for Gompertz than normal, but we do not want
to make too much of a big deal of this conlusion, in particular since the 𝑡-test on the intercept rejects Gompertz
when using only the combination with more than 64 observations. Normal and Gompertz clearly fit the data much
better than the common presumption that they are drawn from the exponential distribution. In the latter case, all
{ln 𝑅2, ln 𝑅3} combinations should be scattered randomly around the point {0, 0}, which is clearly at odds with
the data.

Figure 3: ln 𝑅2 vs. ln 𝑅3

−0.4

−0.3

−0.2

−0.1

0.0

−1.00 −0.75 −0.50 −0.25 0.00
ln  R3

ln
  R

2

Notes: Figure plots the empirical values of ln 𝑅3 as a function of ln 𝑅2 for the 75 region-year combina-
tions with at least 64 observations. The blue line gives the Gompertz predicted value, and the red line
the Normal predicted value.

Remarkably, the root mean squared error hovers around 0.065 in the four regressions, which is about one third
of the theoretical standard deviation of 𝑅2, see Figure C.3 in the Appendix. This suggests that the wealth of indi–
vidual billionaires are not independent draws with replacement from the normal or Gompertz distribution, but that
there is some interaction between wealth-levels of different billionaires. For one well known example, when Mark
Zuckerberg had a dispute with some other students at Harvard about the intellectual ownership of the ideas for
Facebook, it was either Mark Zuckerberg or these students who won the day. Their draws from the wealth distribu–
tion were therefore interrelated. There was room for one Facebook, not two. This observation might have important
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implications for the type of theory used to model the distribution of top wealth.
As a further exploration of the fit of the theoretical distributions to the data and the ability to discriminate be–

tween the normal and the Gompertz distribution, Figure 4 plots the empirical distributions of log wealth 𝑤 against
the theoretical prediction for the three candidate distributions. For normal and Gompertz, the distribution of 𝑤
depend on two parameters, 𝜎 and 𝜓. We use the fact that 𝑤/E

[
𝑤
]

depends only on 𝜓 and not on 𝜎. Hence, by
dividing the data for each region-year combination by their mean, 𝑤/𝑤, their theoretical distribution depends on
𝜓 only, which implies a particular value of plim 𝑅2 = RX

2 (𝜓). We focus on three values for 𝑅2 in the empirically
relevant range: 0.75, 0.80, and 0.90. For the empirical distribution, we combine the data from the ten region-year
combinations for which 𝑅2 is closest to these three reference values, so that we have a sufficient number of observa–
tions on 𝑤/𝑤 for a reliable plot. For each distribution, we set 𝜎 = MX

1
[
1, 𝜓X

2 (𝑅2)
]−1. This makes the theoretical

prediction comparable to the data since MX
1

[
𝜎, 𝜓X

2 (𝑅2)
]
= 𝜎MX

1
[
1, 𝜓X

2 (𝑅2)
]

. For the exponential distribu–
tion, this implies 𝜎 = 1 for all three values of 𝑅2, for normal and Gompertz, of 𝜎 varies between the three reference
values for 𝑅2.

Where the counter-distribution has most visual power just above the lower bound, its log has most power in
the extreme right tail, where the number of survivors is low and hence relative changes are more informative than
absolute changes.

Figure 4 plots the results. The top three panels ((a)–(c)) show the counter-distributions for 𝑅2 = {0.75, 0.80, 0.90}.
For the 0.75 and 0.80 cases, the empirical data align quite closely to either the normal (blue) or Gompertz (red) the–
oretical curves. In contrast, the exponential distribution (green) fits much worse. For 𝑅2 = 0.90, all three parametric
curves fit the data well.

The middle panels ((d)–(f)) show the log-transform of the counter-distribution. While the exponential distri–
bution now quite clearly diverges from the normal and Gompertz, these two candidates remain almost indistin–
guishable, in particular for 𝑅2 = 0.90; only for 𝑅2 = 0.75, the log distribution is visibly different. The parametric
curves for normal and Gompertz overshoot for 𝑅2 = 0.75, fit very well for 𝑅2 = 0.80 and undershoot for 𝑅2 = 0.90.
It should therefore not come as a surprise that the relations between ln 𝑅2 and ln 𝑅3 in Figure 3 are very similar and
that it is difficult to discriminate between both distributions using these moment ratios.

The bottom panels ((g)–(i)) show a potential resolution to this conundrum. There, we plot the parametric
and empirical hazard rates 𝐻 (𝑤). We estimate the empirical hazard rates nonparametrically using an Epanechnikov
kernel5; this results in smooth hazard curves over the wealth distribution. The three candidate distributions have
starkly different predictions regarding 𝐻 (𝑤): it should be constant (exponential), linearly increasing (normal), or
convexly increasing (Gompertz). While the nonparametric estimation means that none of the three hazard curves
plotted directly fits with the predicted curves, visual inspection does indicate a convex increase in the hazard rates.
This is most evident for 𝑅2 = 0.75 and 𝑅2 = 0.90; for 𝑅2 = 0.80, the multimodal hazard curve could also be
consistent with the linearly increasing normal hazard rate.

4.3 Normal and Gompertz: hazard-based tests

The plots of the log distributions in Figure 4 offers a glimpse of hope, focusing on the extreme right tail of the data,
that there might be some prospect of distinguishing between normal and Gompertz. This section will do so by

5. Specifically, we use the muhaz package in R, with the right bound of 𝑤 set equal to the maximum value in each sample (i.e., no truncation)
and with a global bandwidth (i.e., no smoothing of the curve based on local MSE minimization).
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Figure 4: (Log) Counter-Distribution and Hazards, Exponential vs. Normal vs. Gompertz
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(a) Counter-Distribution, 𝑅2 = 0.75
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(b) Counter-Distribution, 𝑅2 = 0.80
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(c) Counter-Distribution, 𝑅2 = 0.90
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(e) Log Counter-Distribution, 𝑅2 = 0.80
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(f) Log Counter-Distribution, 𝑅2 = 0.90
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(g) Hazards, 𝑅2 = 0.75
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(i) Hazards, 𝑅2 = 0.90

Notes: Figure plots the counter-cumulative distribution functions (top panels), log counter-cumulative
distribution functions (middle panels), and hazard rates (bottom panels) of the exponential (green),
normal (blue) and the Gompertz distribution (red), normalized such that their respective values of 𝜎
and 𝜓 are consistent with our mean value of 𝑅2 = 0.75 (left panels), 𝑅2 = 0.80 (middle panels), and
𝑅8 = 0.90 (right panels). Hazard rates are estimated with an Epanechnikov kernel.
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analyzing the hazard rates HX (𝑤;𝜎, 𝜓). As shown in Table 2, the hazard rate of the normal distribution grows
(approximately) linearly with 𝑤, while it grows exponentially for the Gompertz distribution.

We exploit this difference in the shape of the hazard rates for a test. We compute the empirical hazard rate
𝐻𝑟𝑡 (𝑤𝑖) nonparametrically using an Epanechnikov kernel; since every billionaire is treated as an independent ob–
servation, the observation index 𝑖 implies the region-year combination 𝑟𝑡. We use 𝐻𝑟𝑡 (𝑤𝑖) as the dependent variable
for a regression of the form

𝐻𝑟𝑡 (𝑤𝑖) = 𝛽0𝑟𝑡 + 𝛽1𝑟𝑡𝑤𝑖 + 𝛽2𝑤
2
𝑖 + 𝜀𝑖𝑡 . (5)

This regression includes fixed effects 𝛽0𝑟𝑡 for each region-year combination, separate first-order terms 𝛽1𝑟𝑡𝑤𝑖 for
each combination, and a common second-order term in 𝛽2𝑤

2
𝑖

.
The hazard rate for the exponential distribution is equal to 𝜎−1 and independent of 𝑤𝑖 . The variation in 𝜎

between region-year combinations that we allowed for in Section 4.1 is captured by the region-year combination
fixed effects 𝛽0𝑟𝑡 . The independence of the hazard rate from 𝑤𝑖 implies 𝛽1𝑟𝑡 = 𝛽2 = 0. The hazard rate for the
normal distribution is approximately equal to 𝜓/𝜎 + 𝑤/𝜎2, see Table 2. Here, the variation in 𝜎 and 𝜓 between
region-year combinations is captured by combination-specific values 𝛽0𝑟𝑡 and 𝛽1𝑟𝑡 . The approximate linearity of the
hazard rate in𝑤𝑖 implies that 𝛽2 should be zero if the data were generated by the normal distribution. The hazard rate
of the Gompertz distribution reads 𝜓e𝑤/𝜎 . The convexity of this function is captured by 𝛽2 > 0. If 𝛽2 is positive,
this is evidence in favor of the Gompertz distribution. The parameter 𝛽2 can be interpreted as the second derivative
of the function 𝜓e𝑤/𝜎 evaluated at 𝑤 = 0, which is 𝜎−2𝜓. Strictly speaking, also this parameter varies between
region-year combinations, since 𝜎 and 𝜓 do so. We choose not to let 𝛽2 vary between region-year combinations in
our specification for the sake of parsimony. Finding 𝛽2 > 0 provides evidence in favor of the Gompertz distribution.

Table 6: Hazard Tests, log-normal vs. Weibull

Dependent Variable: 𝐻 (𝑤)
Model: (1) (2) (3) (4)

Variables
𝑤 0.27 0.007

(0.15) (0.37)

𝑤2 0.42∗∗∗ 1.6∗∗∗ 0.47∗∗∗ 1.5∗∗∗
(0.05) (0.04) (0.11) (0.10)

Fixed-effects
Region × Year ✓ ✓ ✓ ✓

Varying Slopes
𝑤 (Region × Year) ✓ ✓

Fit statistics
Observations 38,178 38,178 7,575 7,575
R2 0.160 0.311 0.151 0.289
Within R2 0.140 0.119 0.119 0.095
RMSE 3.41 3.09 3.51 3.21

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Driscoll-Kraay (L=2) standard-errors in parentheses.
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Table 6 reports the results. Column (1) and (2) report the results for all 378 region-year combinations; column
(3) and (4) report the results for the 75 combinations with more than 64 billionaires. Since the unit of observation is
the empirical hazard 𝐻𝑟𝑡 (𝑤𝑖) for each billionaire, the number of observations is equal to the total number nonpara–
metric interpolation points for each region-year combination. Column (1) and (3) report the results for a regression
with a common 𝛽1 for all region-year combinations. Columns (2) and (4) report the results when including sepa–
rate coefficients for each combination for both 𝛽0𝑟𝑡 and 𝛽1𝑟𝑡 . Since the error terms are likely to be correlated across
observations, we use Driscoll-Kraay standard errors. Across specifications, the quadratic term 𝑤2 is highly statisti–
cally significant and positive, evidence of a convex increasing hazard, and it is orders of magnitude greater than the
coefficient on the linear term, indicating that the degree of convexity in the data is strong. We conclude from these
regressions that Gompertz is to be preferred above normal.

We have one further theoretical argument against our data on top log wealth being drawn from a truncated
normal distribution. A theoretical justification for this hypothesis is that the distribution of top log wealth is a
truncated version of the distribution of log wealth for the total population. If the latter distribution is normal, it is
natural to assume that the distribution of top log wealth is truncated normal. The value of 𝜓 = 0.17 corresponding
to the observed empirial value for 𝑅2 � 0.80 implies that Φ (−𝜓) = 43% of the population is a billionaire. The
actual number of billionaires as a share of the population is one in a billion, corresponding to 𝜓 = 4.5 and a value of
RN
2 (𝜓) = 0.96, way above the observed empirical values. The theoretical justification for using a truncated normal

distribution for top log wealth therefore fails. To obtain the lower values of 𝑅2 of around 0.75 observed in the data,
the value of 𝜓 has to be even negative, implying that the density of the distribution of top log wealth is initially
increasing and that the modus of distribution does not coincide with the lower bound.

4.4 Predicting expected wealth: Pareto versus Weibull

We have provided strong evidence against the common presumption that top wealth follows a Pareto distribution.
Instead, we found that the Gompertz distribution provides a fair description of log wealth and therefore that the
Weibull distribution is an adequate representation of the level of wealth. Our final test runs a horse race between
Weibull and Pareto for the prediction of mean billionaire wealth in 2018. Fitting two parameters per region for the
Gompertz distribution (𝜎 and 𝜓), while fitting only a single parameter for Pareto (𝜎) would stack the deck against
Pareto. We use therefore a common value 𝜓X

2

(
𝑅2

)
for 𝜓 for the average 𝑅2 across all regions for 2018. Next, we use

this value for 𝜓 to fit values of 𝜎 for Gompertz and Pareto for each region such that the expected log wealth is equal
to its mean in the data for 2018.

Table 7 reports actual and estimated mean wealth among billionaires for Weibull and Pareto for all regions, to–
gether with the estimated values of 𝜎 for both distributions. Actual mean wealth varies widely across regions. Bil–
lionaires have a mean wealth of 2.1 billion in the region Israel + Turkey, whereas this is almost 5.3 billion in the US.
One super-rich billionaire can have an enormous influence on these statistics; for instance, France’s mean wealth of
7.4 is heavily affected by the wealth of LVMH owner Bernard Arnault (estimated to be about 72 billion in 2018).

The mean wealth predicted by the Weibull model traces actual mean wealth remarkably well. Four predictions
are almost identical to the real value (Canada, Asia Islands, Australia, Israel+Turkey), and a further nine estimates
are within half a point of the real value. The remaining five estimates, moreover, are also reasonably close, with the
largest gap being for Germany (1.06 points).

Now compare the prediction of the Weibull and the Pareto model. Table 7 shows 𝜎 to be below one for seven

19



Table 7: Predicted vs. Realised Values of Mean Billionaire Wealth, 2018

Mean Wealth 𝜎̂

Sub-Region Data Weibull Pareto Weibull Pareto

United States 5.29 5.65 ∞ 1.48 1.16
Canada 3.23 3.25 5.96 1.02 0.832
Germany 4.7 5.76 ∞ 1.5 1.18
British Isles 3.83 4.35 ∞ 1.26 1.01
Scandinavia 3.51 4.15 227 1.22 0.996
France 7.44 8.46 ∞ 1.83 1.37
Alpine Countries 3.8 4.8 ∞ 1.34 1.1
Italy 3.96 4.39 ∞ 1.26 1.02
China 3.3 3.12 4.97 0.983 0.799
South-East Asia 3.52 3.85 16.7 1.16 0.94
Asia Islands 2.85 2.86 4.17 0.912 0.76
South Korea 2.88 2.8 3.8 0.894 0.737
Japan 3.95 3.88 12.4 1.16 0.919
Australia 2.74 2.77 3.86 0.886 0.741
India 3.7 3.97 24.1 1.18 0.959
Russia 4.05 4.13 21.3 1.21 0.953
Brazil 4.2 4.51 ∞ 1.29 1.03
Israel+Turkey 2.17 2.25 2.64 0.716 0.622

Notes: Sub-regions are defined in Table 3. For the Weibull prediction, we take a
common𝜓 = 1.84, and we calculate𝜎 using maximum likelihood. The Pareto
prediction is made using 𝑤 as the maximum likelihood estimator of 𝜎.
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regions, including the United States. This immediately results in infinite values for mean wealth for these seven
regions. We note a further five cases where 𝜎 is just slightly above one, such as Scandinavia. Here, we obtain finite
values, but these are obviously so large as to be meaningless. This leaves us with six reasonable estimates. None of
these, however, are closer to the real value than Weibull. We conclude that Pareto is not a useful model to predict
mean wealth, whereas Weibull performs well.

5 Additional Applications

5.1 Cities

Might our conclusion that top wealth is distributed Weibull rather than Pareto apply to other phenomena? We
check this by applying our testing procedure to two other distributions, U.S. city and U.S. firm size. There has been
considerable debate about whether city size is distributed Pareto or something thinner-tailed. Proponents for Pareto,
such as Krugman (1996) and Gabaix (1999), typically find evidence for this relationship by observing a linear slope
in a log-log plot of the largest 135 or so metropolitan statistical areas (MSAs). Eeckhout (2004, 2009) criticizes this
approach on both statistical and substantial grounds. His statistical criticism, much like ours in Section 2, consists
of pointing out that a log-log plot distorts observations at the tails of the distribution, and that formal statistical tests
such as a Kolmogorov-Smirnov test cannot distinguish between Pareto and log-normal at this range. Substantively,
he argues that the MSAs – which must have at least 50,000 inhabitants and typically do not consist of integrated
economic units – are an imperfect measure of urban density, and argues for log-normality on the basis of the entire
distribution of places, including small towns.

Here we take a different approach. We return to the distribution of MSAs, but show that even for this subset of
the data, the Pareto hypothesis fails. For the sake of comparison with Eeckhout (2004), we use the 2000 U.S. Census
in the 2001 vintage. Our results are reported in Table 8.

Table 8: Statistics for the U.S. City Size Distribution

Sample 𝑁 Lower bound 𝑤 𝑤2 𝑤3 𝑅2 𝑅3 ln 𝑅2 − 𝜆N𝑅3 ln 𝑅2 − 𝜆G𝑅3

Full 280 10.8 1.93 4.97 15.8 0.668 0.368 -0.0412 -0.028

Top 135 135 12.6 1.1 2.07 5.06 0.857 0.636 0.009 0.0002

Top 100 100 12.9 1.06 1.89 4.35 0.848 0.615 0.011 0.004

Top 50 50 13.8 0.851 1.26 2.42 0.871 0.654 0.015 0.006

Notes: Data are for the 2000 U.S. Census, 2001 vintage. 𝑁 is the sample size; the lower bound is in logs.

The 𝑅2 and 𝑅3 statistics are nowhere close to unity, regardless of our sample selection choice. It is often argued
that the Pareto hypothesis applies only to the extreme upper tail (e.g., Gabaix (2009) and Jones and Kim (2018)).
However, we see that even at narrower slices of the data Pareto is rejected. In particular, for the top 135 MSAs –
the traditional cutoff in city-size analyses (Krugman 1996; Eeckhout 2004) – the 𝑅𝑘 statistics are again far from
unity. Remarkably, 𝑅2 and 𝑅3 hover around the same values found for billionaire wealth, namely 𝑅2 ≈ 0.85 and
𝑅3 ≈ 0.65.

21



The final two columns of Table 8 show the fit of the predicted linear relationship between ln 𝑅2 and ln 𝑅3. The
gap is small regardles of cutoff point, but is clearly smallest for the top 135, the traditional sample chosen to study the
upper tail. The Gompertz prediction is perfect, and the normal prediction is only off by a percentage point. Going
further in the upper tail slightly worsens these fits, but the model continues to perform well.

Like with wealth, we distinguish between normal and Gompertz by computing hazard rates for each of the
sub-samples reported in Table 8. We regress these hazards on a quadratic polynomial in 𝑤 (here interpreted as log
city size in excess of the chosen threshold). Table 9 reports the results. Across specifications, both 𝑤 and 𝑤2 are
highly significant. This is again evidence against Pareto. Likewise, the quadratic term is highly significant, providing
evidence favoring Gompertz over normal.

Table 9: Hazard Tests, City Size

Dependent Variable: 𝐻 (𝑤)
Model: (1) (2) (3) (4)

Variables
Constant 0.85∗ 1.6∗∗∗ 1.7∗∗∗ 2.2∗∗∗

(0.34) (0.40) (0.40) (0.48)

𝑤 -0.65 -1.6∗ -1.9∗ -3.3∗∗
(0.43) (0.71) (0.79) (1.2)

𝑤2 0.19∗ 0.55∗∗ 0.69∗∗ 1.4∗∗
(0.09) (0.21) (0.25) (0.47)

Fit statistics
Sample Full Top 135 Top 100 Top 50
R2 0.381 0.351 0.356 0.363
Adjusted R2 0.369 0.338 0.343 0.350
RMSE 1.31 1.61 1.67 1.95

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Heteroskedasticity-robust standard-errors in parentheses

Hence, using the same data as Eeckhout (2004), we corroborate his conclusion that Pareto provides a poor fit.
However, we find no evidence of convergence of the hazard rate to a constant, as is required for the exponential dis–
tribution to hold for log city size (equivalently, for Pareto to hold for city size). Moreover, we contradict Eeckhout’s
preference for log-normal, based on the clearly convexly increasing hazard rates of log city size.

5.2 Firm Size

Contrary to our previous two cases, which suffer from relatively small sample sizes, we draw inference from a large
(synthetic) sample of U.S. firms. We use data on the tabulated firm size distribution in the U.S. since 1930, compiled
by Kwon, Ma, and Zimmermann (2024). These tabulations report the number of firms and average firm size in
each bracket. The authors use generalized Pareto interpolation (Blanchet, Fournier, and Piketty 2022, gpinter)
to study the increase in top firm size shares. This interpolation method takes as inputs the bracket lower bound,
the percentile corresponding to that lower bound, and the bracket average, and interpolates the entire distribution
based on a semiparametric approximation to the Lorenz curve.
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We use Kwon et al.’s tabulated datasets, and use the gpinter interface on www.wid.world to generate the
interpolations. We use asset value as our measure of firm size. Once we have these interpolations, we can use the
interface to sample from this interpolation. Effectively, this procedure assumes the interpolation to be the correct
data-generating process, and proceeds to draw synthetic samples of a given sample size which are representative of the
interpolated data. As a result, assuming that the interpolated data are a good approximation to the true distribution,
we can effectively study the upper tail of the firm size distribution with arbitrary precision. Hence, we do not report
standard errors.

We draw a million observations from the full distribution for all years between 2000–2018.6 We keep the top
1% of the distribution, resulting in 10,000 observations per year. The results are plotted in Figure 5.

Figure 5: Tests for Pareto, U.S. Firm Size Distribution
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Notes: Each point represents a sample of 10,000 drawn from the top 1% of the U.S. firm
size distribution using generalized Pareto interpolation; see the main text for details.

We observe that the value of 𝑅2 and 𝑅3 are constant over time. The values of 𝑅2, while not far from 1, are clearly
different and hover around 0.9. The values for 𝑅3, moreover, are clearly lower than for 𝑅2 and are about 0.75. We
conclude that firm size, too, does not follow a Pareto distribution.

We proceed with our tests to distinguish normal from Gompertz. Table 10 shows the results of regression ln 𝑅2−
𝜆X ln 𝑅3 on a constant. We allow for the standard errors to be serially correlated (Newey and West 1987).

The results are as before. The gaps are small in absolute magnitude, but significant. This is of course a con–
sequence of the synthetic nature of our sample, which gives us arbitrary precision. Nevertheless, the quantitative
patterns conform to our conclusions with wealth and city size. Like with city size, Gompertz appears to fit slightly
better, since the gap is significant only at the 1% level and an order of magnitude smaller than the normal gap.

Our final test computes hazard rates for the firm size distribution in all years. We regress these on a quadratic in
𝑤, including year fixed effects to capture only within-year variation. Table 11 shows the results. Column (1) uses a

6. Drawing this many observations for all years since 1930 is computationally burdensome; we have drawn samples of 10,000 from all years,
with very similar results which are available on request.
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Table 10: ln 𝑅2 − 𝜆X ln 𝑅3, Firm Size

Dependent Variables: ln 𝑅2 − 𝜆N ln 𝑅3 ln 𝑅2 − 𝜆G ln 𝑅3
Model: (1) (2)

Variables
Constant 0.02∗∗∗ 0.002∗∗

(0.001) (0.001)

Fit statistics
Observations 19 19
RMSE 0.033 0.028

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Newey-West (L=0) standard-errors in parentheses

common coefficient on 𝑤, column (2) allows for the coefficient to vary across years.

Table 11: Hazard Tests, Firm Size

Dependent Variable: 𝐻 (𝑤)
Model: (1) (2)

Variables
𝑤 -0.15∗∗∗

(0.03)

𝑤2 0.03∗∗∗ 0.04∗∗∗
(0.004) (0.005)

Fixed-effects
Year ✓ ✓

Varying Slopes
𝑤 (Year) ✓

Fit statistics
Observations 1,919 1,919
R2 0.142 0.178
Within R2 0.139 0.055
RMSE 1.51 1.48

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Driscoll-Kraay (L=2) standard-errors in
parentheses

The results are again strongly in favor of Gompertz. The quadratic term is highly significant. Like in Table 10,
part of this precision is artifical due to the synthetic nature of the sample; however, the magnitude of the quadratic
coefficient, which is on the same order as the linear term, shows its importance. This is a stark conclusion, since we
are now examining the full top 1% of the firm size distribution, a much larger part of the upper tail than we examined
for wealth. Yet, even for this larger sample, the convexity of the hazard rates are clear, reinforcing our conclusion that
Gompertz is a better fit than normal.
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6 Conclusion

We test the default assumption of Pareto for right-skewed distributions, using the Forbes List of Billionaires. We de–
velop test statistics 𝑅𝑘 based on normalizations of 𝑘th-order moments of the log-transformed data. We find strong
evidence against the Pareto distribution. Our rejection of Pareto conforms to the arguments of Blanchet, Fournier,
and Piketty (2022); however, where they argue for a non-parametric distribution, we show that a parametric al–
ternative – (truncated-)Weibull – fits the data remarkably well. Our evidence for Weibull comes from the strong
linear fit of ln 𝑅2 on ln 𝑅3 and most importantly from the strongly convex hazard rates of log wealth, which allow
us to discriminate between Weibull and log-normal. A comparable analysis of data on city- and firm-size yields the
same conclusion: a clear rejection of Pareto and a strong preference for Weibull. We view these results as conclu–
sive evidence against Pareto (or: exponential for its log), and strong evidence in favoring Weibull above log-normal
(or: Gompertz above normal for its log). We conjecture our rejection of Pareto and embrace of Weibull to apply to
even more settings where Pareto has commonly been used. Further empirical research will easily be able to test this
hypothesis, since our statistics 𝑅𝑘 are easily calculated and our Weibull alternative yields easily testable predictions.

This conclusion comes with two caveats. First, Forbes rounds the data, resulting in ties between billionaires.
This cause imprecisions in the estimated hazard rates. Second, hazard rate estimation requires rank-ordering the
data. This is subject to the same criticisms as we levelled against the rank-size regressions. Hence, the preference for
Weibull above log-normal is less firmly grounded than the rejection of Pareto.

The truncated-Weibull distribution differs on two accounts from Pareto. First, whereas the Pareto distribution
has a constant hazard rate, the truncated-Weibull distribution has an exponentially increasing hazard rate. Hence,
the ratio of the density at the threshold and the fraction above the threshold is increasing in the threshold. However,
while the Weibull hazard does not converge to Pareto, the moments of Weibull do converge to Pareto far in the
right tail. Pareto has no defined moments for 𝑘 ≥ 𝜎−1, which is the empirically relevant constraint even for the
expectation (𝑘 = 1). In contrast, the moments of Weibull are always defined. These two differences make the
Weibull distribution particularly suited for the study of upper tails.

The clarity of our results raises the question why they have not been found before. Existing research appears to
hold a prior that the hazard rate will converge to a constant, perhaps implicitly reasoning from the stochastic con–
vergence of diffusion processes to Pareto discussed in Section 2. This prior is at odds with the data in all cases we
study in this paper. A second reason might be that the primary diagnostic to check Paretianity is the log rank regres–
sion. This tool has weak discriminatory power between Pareto and Weibull for the relevant range of 𝜓, introduces
correlations in the error term due to ordering the data, and is sensitive to measurement error. Our test statistics 𝑅𝑘

and estimation methods do not suffer from these problems.
Our results have important theoretical and empirical implications. If wealth is Weibull, log wealth is Gompertz.

It has recently been proved that Gompertz emerges as the distribution of the length of self-avoiding walks (SAW) on
stochastic Erdős–Rényi–Gilbert networks (Tishby, Biham, and Katzav 2016). These networks are formed by a graph
𝐸𝑅(𝑛, 𝑝) with 𝑛 nodes, where each edge is generated with probability 𝑝. The connected nodes form a network. A
SAW on such a network is defined as follows. Start at any node 𝑖 that is part of the network. A SAW is a random walk
from one node to another node until one cannot proceed to an new node not visited previously. Tishby, Biham, and
Katzav (2016) prove that the distribution of SAW path lengths is Gompertz.

Stochastic networks are increasingly explored by economic theorists, see Goyal (2023). We can interpret the
exponentially increasing hazard rate of the next node being the endpoint of a SAW as a “capacity constraint”: ulti–
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mately, a SAW can never be longer than the number of nodes minus one, 𝑛−1. This could serve as a microfoundation
for the emergence of Gompertz in our settings. For instance, cities can only grow in the number of available people
and on the available land; their size is therefore naturally bounded by the total number of people and the available
land mass. Likewise, firms can only grow by “invading” new parts of the economy; hence, their size is bounded by
the size of the economy at large. Similar analogues can be constructed for income and wealth. We explore these argu–
ments further in a companion paper, Teulings and Toussaint (2024), where we show that the parameter 𝜎 depends
on the total number of people in region. Wealth inequality in region depends therefore on its population size: the
larger the population, the greater wealth inequality.

A final implication of our results concerns optimal taxation of top incomes, assuming that top income also
follows a Weibull distribution. A well-known result in the Mirrlees (1971) framework is that the marginal tax rate
on the richest individual should be zero when the income distribution is bounded (Sadka 1976). A marginal tax rate
just yields distortions at its level of incidence. However, it comes with the benefit of a higher tax on on higher income
levels. For the highest income, there are no higher income levels, so the benefit of a positive marginal tax rate is zero
and hence this marginal tax should be zero. This is not necessarily true when we allow the income distribution to
be unbounded, see Saez (2001). When the distribution of top income is Pareto and the uncompensated elasticity
of earned income with respect to the marginal tax rate (denoted 𝜂) is the same for all income levels, the Diamond
(1998)–Saez (2001) formula for the optimal top income tax rate 𝜏∗ satisfies:78

𝜏∗ =
𝜎

𝜎 + 𝜂
, (6)

where 𝜎 is the inverse tail index, and 𝜂 the elasticity of earned income. The parameter 𝜎 appears in the formula
because the optimal tax rate equates the cost of a marginal tax at𝑊 (which is 𝜂×𝑊×Pr

[
𝑊 = 𝑊

]
) and the additional

tax revenue on an even higher income 𝑊 > 𝑊 enabled by this a higher marginal rate (which is Pr
[
𝑊 > 𝑊

]
). For

Pareto, this ratio is constant, so that the top tax rate should converge to a constant. For Weibull, the corresponding
expression reads:

𝜏∗ =

𝜎
𝜓
e−𝑤/𝜎

𝜎
𝜓
e−𝑤/𝜎 + 𝜂

,

so that the optimal tax rate converges to zero. These findings mirror the conclusions in Mankiw, Weinzierl, and
Yagan (2009), who argue that the log-normal distribution provides an equally good fit of the income data as Pareto.
We have shown that in fact, log-normal provides a better fit than Pareto but Weibull an even better one. However,
this analysis maintains the assumption that the earned income elasticity for the top earners 𝜂 converges to a constant.
It might be the case that a formal model that generates a Weibull right tail of the income distribution also generates
a declining elasticity of earned income with respect to the marginal tax rate since it becomes increasingly difficult to
increase one’s income or wealth due to “capacity constraints”, as in our discussion of networks with SAWs above.
In that case, 𝜂 would also converge to zero for the top earner and 𝜏∗ might again be constant. Fully modelling the
optimal taxation implications of our results is an important avenue for further research.

7. The Diamond-Saez formula ignores externalities of taxing top earners. Jones (2022) argues that top earners generate new ideas that increase
productivity growth. In that case, optimal tax rates are lower.

8. As is often done in the literature, we implicitly assign a marginal social weight of zero to the richest individual, which can be justified using
utilitarian arguments.
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A The asymptotic variances of 𝑅𝑘 and 𝑅𝑘𝑅
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where Λ(𝜓) is the inverse Mills’ ratio.
Using 𝑥 B 𝑞 − 𝜓, we obtain:
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Figure B.1: RN
𝑘
(𝜓) for 𝑘 = 2, 3, 4 (red, blue, green) for the relevant range of 𝜓
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B.2 Maximum likelihood estimator of 𝜓

The log likelihood for the normal distribution reads

log 𝐿
𝑁

= ln 𝜙 (𝑤/𝜎 + 𝜓) − ln𝜎 − lnΦ (−𝜓)

= − 1
2
(𝑤/𝜎 + 𝜓)2 − ln𝜎 + ln 𝜙 (0) − lnΦ (−𝜓)

The first order conditions for 𝜎ml and 𝜓ml read
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These conditions can be written as:
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𝑅2 is therefore a sufficient statistic for the calculation of 𝜓ml and 𝜓ml = 𝜓N
2 (𝑅2).

B.3 Linearization of the relationship between RN
2 (𝜓) and RN

3 (𝜓)

Define:
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This definition implies that lnRN
2 (𝜓) − 𝜆N lnRN
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Presuming that this relation also holds approximately for intermediate values of𝜓, we obtain lnRN
2 (𝜓) � 𝜆N lnRN

3 (𝜓).
Figure 2 shows that lnRN

2 (𝜓) − 𝜆N lnRN
3 (𝜓) is indeed close to zero for the relevant range of 𝜓 (note the scale of

the y-axis). Some finetuning (where we focus on the most relevant range 𝜓 ∈ (0, 3)) yields an even more precise
relationship, which is also shown in Figure B.2:

lnRN
2 (𝜓) � 0.0105 + 0.390 lnRN

3 (𝜓) .
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Figure B.2: lnRN
2 (𝜓) = 0.373 lnRN

3 (𝜓) (green) and lnRN
2 (𝜓) = 0.011 + 0.390 lnRN

3 (𝜓) (red)

C Gompertz distribution

C.1 Derivation of E
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C.2 Maximum likelihood estimator of 𝜓

The log likelihood function reads:

log 𝐿
𝑁

= 𝑤/𝜎 − 𝜓e𝑤/𝜎 + 𝜓 + ln𝜓 − ln𝜎.
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Figure C.1: RG
𝑘
(𝜓) for 𝑘 = 2, 3, 4 (red, blue, green) for the relevant range of 𝜓

The first order conditions for 𝜎ml and 𝜓ml read:

d log 𝐿
𝑁d𝜓

= −e𝑤/𝜎ml + 1 + 𝜓−1
ml = 0,

d log 𝐿
𝑁d𝜎

= −𝜎−2
ml 𝑤 + 𝜎−2

ml 𝜓mle𝑤/𝜎ml − 𝜎−1
ml = 0.

Hence, using 𝑥 B 𝑤/𝜎 we obtain:

e𝑥 = 1 + 𝜓−1
ml ,

𝜓ml𝑥e𝑥 = 1 + 𝑥.

Hence, 𝜓ml ≠ 𝜓
G
𝑘
(𝑅𝑘) for any positive integer 𝑘 .

C.3 Linearization of the relationship between RG
2 (𝜓) and RG

3 (𝜓)

Define:

𝜆G B lim
𝜓→0

lnRG
2 (𝜓)

lnRG
3 (𝜓)

= ln (2!) /ln (3!) = 0.3869.

The definition implies that lnRG
2 (𝜓) − 𝜆G lnRG

3 (𝜓) satisfies:

lim
𝜓→∞

[
lnRG

2 (𝜓) − 𝜆G lnRG
3 (𝜓)

]
= lim

𝜓→0

[
lnRG

2 (𝜓) − 𝜆G lnRG
3 (𝜓)

]
= 0.
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Presuming that this relation also holds approximatily for intermediate values of𝜓, we obtain lnRG
2 (𝜓) � 𝜆G lnRG

3 (𝜓).
Figure 4 shows that lnRG

2 (𝜓) − 𝜆G lnRG
3 (𝜓) is indeed close to zero for the relevant range of 𝜓. Some finetuning

yields an even more precise relationship, which is also shown in Figure C.2:

lnRG
2 (𝜓) = 0.027 + 0.404 lnRG

3 (𝜓) .

Figure C.2: lnRG
2 (𝜓) = 0.387 lnRG

3 (𝜓) (dark green), lnRG
2 (𝜓) = 0.027 + 0.404 lnRG

3 (𝜓) (red)

C.4 The variance of ln 𝑅2 − 𝜆 ln 𝑅3

For the Gompertz distribution, we obtain:

plim (𝑁Var [ln 𝑅2 − 𝜆 ln 𝑅3])

= 𝑒−𝜓

©­­­­­­«

∫ ∞
0 𝑥3 exp(−𝜓e𝑥 )d𝑥

(
∫ ∞
0 𝑥 exp(−𝜓e𝑥 )d𝑥)2

+ 𝜆2
2
∫ ∞
0 𝑥5 exp(−𝜓e𝑥 )d𝑥

3(
∫ ∞
0 𝑥2 exp(−𝜓e𝑥 )d𝑥)2

+ (2 − 3𝜆)2 2
∫ ∞
0 𝑥 exp(−𝜓e𝑥 )d𝑥

Ei(𝜓)2 −

2𝜆 5
∫ ∞
0 𝑥4 exp(−𝜓e𝑥 )d𝑥

6
∫ ∞
0 𝑥 exp(−𝜓e𝑥 )d𝑥

∫ ∞
0 𝑥2 exp(−𝜓e𝑥 )d𝑥 − 2 (2 − 3𝜆) 3

∫ ∞
0 𝑥2 exp(−𝜓e𝑥 )d𝑥

2
∫ ∞
0 𝑥 exp(−𝜓e𝑥 )d𝑥Ei(𝜓) +

2𝜆 (2 − 3𝜆) 4
∫ ∞
0 𝑥3 exp(−𝜓e𝑥 )d𝑥

3
∫ ∞
0 𝑥2 exp(−𝜓e𝑥 )d𝑥Ei(𝜓) − (1 − 2𝜆)2

ª®®®®®®¬
.

For the exponential distribution, we obtain:

plim (𝑁Var [ln 𝑅2 − 𝜆 ln 𝑅3])

=
4!
2!2

+ 𝜆2
6!
3!2

+ (2 − 3𝜆)2 2! − 2𝜆
5!
2!3!

− 2 (2 − 3𝜆) 3!
2!

+ 2𝜆 (2 − 3𝜆) 4!
3!

− (1 − 2𝜆)2

= 10𝜆2 − 6𝜆 + 1
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Figure C.3 presents the variance and the standard deviation of ln 𝑅2−𝜆 ln 𝑅3 for the exponential and Gompertz dis–
tribution, for 𝜆 = 0.404. In order to document the slow convergence to its limiting for the exponential distribution
we plot these function for a longer range, 𝜓 ∈ [1, 50].

Figure C.3: Variance (solid) and standard deviation (dashed) of ln 𝑅2−𝜆 ln 𝑅3 for exponential (green) and Gompertz
(red) as a function of 𝜓
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