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1 Introduction

The global ratio of billionaires to population size has more than quadrupled since 2001, see Figure 1a. The regional variation
in this trend is enormous, see in Figure 1b. The ratio has increased in China and India by a factor 40 and 25 respectively, while
in Europe it has increased only fourfold. What factors explain this general increase and its regional variation?

Figure 1: Global and Regional Trends in Billionaire Numbers
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(a) Global Log Number of Billionaires per Million Population,
2001–2021
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(b) Regional Variation in Log Billionaire Numbers, 2001–
2021

Notes: Panel (a) shows the evolution of the global log number of billionaires, normalized by pop-
ulation size (in millions); panel (b) shows the same per region, with regions defined in Table 1.

Given the often heated debate surrounding billionaire wealth (e.g., Saez and Zucman 2019), it is surprising that this ques–
tion has not been extensively studied. The purpose of this paper is to fill this gap. We develop a minimalist model that can
both capture salient features of the billionaire wealth distribution while remaining very tractable. Our point of departure is
a robust finding, documented and extensively tested in our companion paper (Teulings and Toussaint 2023), that billionaire
wealth is not distributed Pareto but Weibull. If wealth is Weibull, log wealth is Gompertz, a distribution characterized by an
exponentially increasing hazard rate. In our setting, this means that it becomes exponentially less likely to observe a billionaire
with, say, 100 billion compared to one with 10 billion. While this finding is important in its own right, in this paper we solely
use it to motivate a network model of billionaire wealth. We model an economy which is represented by a random Erdős-Rényi
graph. This network consists of 𝐿 nodes, each of which has probability 𝑝 of forming a link. We think of nodes in this setting
as customers, with a link between two nodes signifying an expansion of a firm’s customer base. Then, the extent of business
growth (a longer uninterrupted path between nodes) is limited by the extent of the market, since a larger number of nodes
ensures more connections are possible. Mathematically, we let a business owner’s wealth be represented by a Self-Avoiding
Walk (SAWs) on the graph, meaning a path that touches no nodes more than once. It has recently been proved that SAWs on
random graphs are distributed Gompertz (Tishby, Biham, and Katzav 2016), completing our analogy. A longer SAW, in our
context, means a firm which has successfully expanded its operations to serve many customers (many links between nodes).

The length of the longest SAW – equivalently, the wealth of the richest person – is governed by the hazard rate. In our
model, the hazard rate is completely determined by the parameter 𝑝, which serves as the elasticity of the hazard rate with respect
to wealth: a 1% increase in wealth leads to an increase of the hazard rate of 𝑝%. A high 𝑝 means few super-rich individuals
(a high hazard rate). As 𝑝 → 0, the length of the upper tail increases. Empirically, we observe widely varying values of 𝑝,
ranging anywhere from just above 0 to almost 0.7. A direct implication of our network model is that 𝑝 should solely be
determined by the log number of nodes. In our interpretation of market size, this means that 𝑝 should solely be determined
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by log population size in a region, and that the relationship should be negative. This is a startling and strong prediction: More
populous countries should have more tail inequality.

We also study entry into the network by analyzing parameters governing the lower bound. We view business owners as a
set of individuals who can capitalize rental income into wealth, and model the threshold for that capitalization as a function
of local and global market conditions. Specifically, we will allow the log lower bound to be a function of log nominal GDP
per capita and the log of a global financial wealth-income ratio. Entry into billionaire ranks is governed by two parameters, ℎ
and 𝑑. ℎ is the inverse hazard at the capitalization lower bound, conditional on 𝑝; the higher ℎ, the lower the hazard rate at the
beginning of our sample and hence the fatter the right tail of top wealth. Conditional on 𝑝 and ℎ, 𝑑 measures the probability
that somebody is t billionaire. For both these parameters, our model gives strong predictions: They should depend on log
GDP per capita and the log wealth-income ratio, with coefficients equal to one, and on nothing else.

Our highly stylized model yields strong and testable predictions. We use data from the Forbes List of Billionaires from
2001 to 2021 to test our hypotheses. We find that our predictions by and large hold. We robustly find that 𝑝 solely depends on
population, and not on the other covariates, with a negative coefficient as predicted. We test for the inclusion of fixed effects.
Remarkably, our model does not need time fixed effects, explaining all time-series variation in 𝑝. We do, however, need region
fixed effects. This indicates that there is more cross-sectional variation than our minimalist model can capture.

Similar patterns emerge for the other two parameters. The conditional baseline inverse hazard, ℎ, should depend solely on
log GDP per capita and our asset-market factor, with unit coefficients. The unit coefficients restriction holds quite well. We
find again that time fixed effects are not needed, but region fixed effects are. Finally, the conditional billionaire probability, 𝑑,
should also move one-for-one with log GDP per capita and the log market capitalization factor and nothing else. Our results
are similar to those for ℎ, with the restriction that these variables have unit coefficients holding reasonably well.

We conclude from our exercise that our minimal model explains the increase in billionaires remarkably well. Another
way of evaluating this statement is by looking at the model’s predictive capacity. To that end, we disaggregate our data to the
country level, including countries with way fewer than 32 billionaires. We find that our model predicts both the fraction of
billionaires as well as their mean (log) wealth extremely well. Moreover, we also track the global values for these moments very
closely. We can decompose the global increase in billionaire numbers and mean (log) wealth into the contributions played
by our variables (log population, log GDP per capita, and log market capitalization). We find that the change in global GDP
per capita played by far the largest role, explaining 70% of the model-implied increase in billionaire numbers and mean log
wealth, and more than 60% of the increase in mean wealth. Similar conclusions follow if we focus solely on the United States.
There, too, most of the billionaire increases and their increase in mean (log) wealth has been driven by the increases in GDP
per capita. We conclude that our simple model has quite some power.

We interpret our model and results in light of heterogeneous-firm models. In this class of models1, a country’s market
size determines average firm size and the number of entrants. Opening up to trade disproportionately benefits the largest
firms. We see our results as the counterpart results of the owners of these firms. Large countries have larger firms and hence
more wealthy firm-owners. Changes in local and global conditions that are more conducive to business dynamism benefit the
entire market, but most disproportionately benefit the upper tail. Hence, the elasticity of the wealth hazard rate 𝛾 declines in
population size while mean (log) wealth are increasing in GDP per capita and the global wealth-income ratio.

In addition, we can link our model to endogenous-growth models where the number of ideas is proportional to popula–
tion size (Jones 2022). A larger population means more ideas; moreover, more ideas mean more possibilities for connecting
ideas, driving technological progress. It is an interesting implication of our particular Erdős-Rényi structure that the network
features few clusters. While this is generally viewed as an unrealistic feature of these models (Goyal 2023), in our context a
lack of clustering is natural: If the network were highly clustered, many SAWs would get “stuck” in their cluster, meaning few
really successful firms could emerge.

1. See Melitz (2003) for the seminal contribution.
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Our model naturally leaves quite some detail unexplained. Our reliance on region fixed effects suggests that some countries
have more billionaires than they “deserve” based on fundamentals. Inspecting the standardized fixed effects, it becomes clear
that Scandinavian countries as well as small low-tax regions like Israel, Hong Kong, Singapore and Switzerland overperform.
It is plausible that institutional differences make up the bulk of this variation in fixed effects, with high-fixed effect regions
having favorable tax regimes and other institutional settings that attract billionaires to reside there.

Related Literature: We build on three literatures. First, we contribute to the literature on cross-country inequality dif–
ferences. Much of the literature has focused on variation in income levels (e.g., Acemoglu and Ventura 2002; Teulings and
van Rens 2008; Lakner and Milanovic 2016; Chancel and Piketty 2021), with data limitations precluding extensive study of
wealth inequality. The few papers which do study wealth from a global comparative perspective include Davies, Sandström,
Shorrocks, and Wolff (2011) and Bauluz, Blanchet, Martínez-Toledano, and Sodano (2022). We contribute by studying a
well-defined and interesting part of the wealth distribution, namely the very upper tail, with one of the few cross-country
datasets fit for this purpose.

Second, we contribute to the literature which seeks to explain top wealth inequality and its increase. As surveyed in Ben–
habib and Bisin (2018), many models either take the incomplete-markets or random-growth form (see e.g. Benhabib, Bisin,
and Zhu 2011; Achdou et al. 2022); both of which are not capable of explaining cross-country differences since all variation
in wealth is due to different realizations of the stochastic processes underlying wealth accumulation (labor income risk in a
standard Bewley-Aiyagari-Huggett model; stochastic rates of return in Benhabib, Bisin, and Zhu 2011). We relate more closely
to models with entrepreneurs or firm owners (e.g, Quadrini 1999; Cagetti and De Nardi 2006; Aghion et al. 2019; Jones and
Kim 2018). Novel to our approach is using the Gompertz distribution to show that the wealth distribution is more unequal
for more populous countries.

Finally, we relate to the burgeoning literature on networks in (international) macroeconomics (Goyal 2023). Prominent
work has focused on input-output linkages (e.g., Baqaee and Farhi 2019; Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
2012; Carvalho and Gabaix 2013; Liu and Tsyvinski 2024). While the use of networks in this paper is more abstract than in
these papers, we do have concrete economic interpretations in mind in the style of Melitz (2003)-style models where market
size and access to global markets determines domestic firm size and dispersion.

Paper Outline: Section 2 recapitulates the main arguments in Teulings and Toussaint (2023). Section 3 presents our model,
while Section 4 analyzes its identification and estimation. In Section 5, we discuss our data. Section 6 presents the results. We
use our model for counterfactual exercises in Section 7. We discuss and interpret our results in Section 8.

2 Stylized Facts

We need a model to match the following facts:

Fact # 1: Billionaire Wealth is not Pareto, but Weibull. It might seem strange to model log wealth as Gompertz, given that
the Pareto distribution for wealth is the default (and hence for log wealth, the exponential distribution). However, Pareto is
typically taken for granted and not tested. We refer the reader to Teulings and Toussaint (2023) for our full testing procedure,
including all robustness checks and discussion of measurement error. Briefly, our testing procedure is based on a scaled ratio
of log moments. If wealth is Pareto, log wealth is exponential. The exponential distribution has the attractive feature that
all moments are well-defined (unlike for Pareto, where only moments up to 𝛼−1 are defined, where 𝛼 is the inverse tail index
coefficient). The exponential distribution has the moment function E

[
𝑤𝑘

]
= 𝛼𝑘𝑘 ! for integer moment 𝑘 . Our test of Pareto

essentially divides the left-hand side of the moment function by the right-hand side, where we replace 𝛼 by its maximum
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likelihood estimator, mean log wealth. Under the null that wealth is Pareto, this test statistic should therefore equal 1.
We find robustly, across all regions and years, that Pareto is rejected, i.e., the test statistic is significantly different from 1.

Moreover, the rejection is systematic: the test based on the second moment (i.e., 𝑘 = 2) delivers a range of statistics centered
around 0.85, whereas the third-moment test is centered around 0.65. This suggests persistent deviations from Pareto, where
higher-order moments die out relative to lower-order moments; in other words, there are “too few” super-rich billionaires
relative to “ordinary” billionaires. This suggests a systematically increasing hazard of log wealth. Of all the distributions within
the exponential family which nest exponential as a special case, the only distribution consistent with these fact is the Gompertz
distribution.

The defining feature of Gompertz is an exponentially increasing hazard rate. We visualize this feature by plotting the
empirical cumulative hazard rates of the global wealth distribution in 2018. As seen in Figure 2, the empirical cumulative
hazard is very closely matched by the parametric Gompertz hazard (in blue). By contrast, if wealth would be Pareto, the
hazards should be close to the parametric hazard of the exponential distribution (in red). This is clearly not the case.

Figure 2: Empirical and Parametric Hazard Rates, Billionaire Log Wealth Distribution
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Notes: Figure plots the Kaplan-Meier estimator of the empirical cumulative hazard of the billion-
aire log wealth distribution, using the 2018 Forbes List of Billionaires and pooling all observations.
The blue dotted line is a fitted Gompertz hazard, and solid red is an Exponential hazard.

If log wealth is Gompertz, wealth in levels is (truncated-)Weibull. In Teulings and Toussaint (2023), we provide further
evidence based on cross-equation restrictions that Weibull provides a better fit to the data than Pareto. We also find this re–
jection of Pareto and the better fit of Weibull for city size and, importantly for this paper, firm size. The model in the present
paper is intended to rationalize the Gompertz distribution of log wealth.

Fact # 2: Large Variation in Billionaire Numbers and Mean Log Wealth. We can observe the trends for billionaire
numbers in Figure 1. The number of billionaires has quadrupled, with large variation between broad regions. Even zooming
in within these regions, there is substantial heterogeneity. For instance, within Europe, there are large differences between,
say, Italy and Switzerland. We can also investigate whether billionaires’ wealth increased. Figure 3 shows global and regional
trends in mean log wealth, analogous to Figure 1.
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Figure 3: Global and Regional Trends in Billionaire Mean Log Wealth
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(b) Regional Variation

We again observe substantial increases over time. Pooling all observations, panel (a) shows that billionaires in 2001 owned
on average exp(0.809) = 2.25 billion USD; by 2021, this had increased to exp(1.04) = 2.8 billion, almost a 25% increase.
As panel (b) shows, these global trends mask substantial regional variation. There is a marked decline around the 2008 crisis,
covered by a quick rebound. There is a sharp increase from 2020 to 2021; panel (b) shows that this increase is common to
most regions (with the partial exception of the Middle East).

3 The Model

Consider an economy in region 𝑗 in year 𝑡 with population 𝐿 𝑗𝑡 > 0. This economy consists of a number of Erdős-Rényi
networks ER

[
𝐿 𝑗𝑡 , 𝑝 𝑗𝑡

]
where 𝐿 𝑗𝑡 is the number of nodes in this network and where 𝑝 𝑗𝑡 ∈ (0, 1) is probability that there

exists a link between two nodes. The expected number of links of a node to other nodes 𝑐 𝑗𝑡 satisfies:

𝑐 𝑗𝑡 = 𝑝 𝑗𝑡

(
𝐿 𝑗𝑡 − 1

)
� 𝑝 𝑗𝑡𝐿 𝑗𝑡 (1)

where the latter approximation applies for large 𝐿 𝑗𝑡 , as in our application. We assume 𝑐 𝑗𝑡 > 1, such that a giant cluster
component arises in each network including a macroscopic fraction of the nodes; that is, a nonvanishing fraction of nodes
are connected as 𝐿 𝑗𝑡 gets large. Our favourite interpretation of these networks is that each network represents the customers
of a particular industry. A link represent for example either a shared technology of two nodes which require inputs from that
industry, a flow of information between two nodes inducing them to buy the same product, or other factors that coordinate
the consumption patterns of two nodes. Though there presumably are other interpretations of this network structure, we use
this interpretation for explaining the mechanics of the model. In each industry — that is: on each ER

[
𝐿 𝑗𝑡 , 𝑝 𝑗𝑡

]
network —

there is a dominant supplier. The customer-base of this dominant supplier is represented by a Self-Avoiding Walk (SAW) on
this network with length 𝑧 (throughout the paper random variables are underlined). A SAW is a random walk along the links
of the network from one node to another, where the walker cannot revisit a node that she has visited before; the walk ends
when the walker arrives at a node without links to nodes that she has not visited before, see Goyal (2023) for a discussion and
Figure 4 for an illustration.2

2. Terminology differs slightly between fields, with some authors calling a SAW a path. We stick to SAWs to emphasize the implication that a node cannot
be visited twice.
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Figure 4: Self-Avoiding Walk on an Erdős-Rényi Network

Notes: Figure shows an ER[100, 0.015] network. There are many self-avoiding walks on this net-
work; one particular SAW (starting from the left-most node) is shown in red.

If 𝑝 𝑗𝑡 were independent of log population size ℓ 𝑗𝑡 B ln 𝐿 𝑗𝑡 , equation (1) implies that the expected number of links of
a node 𝑐 𝑗𝑡 would be proportional to 𝐿 𝑗𝑡 . Throughout, lower cases denote the log of the corresponding upper case. This
is unrealistic: one would not expect the number of links of people in large countries to rise proportional to the size of the
population. It would imply, for example, that people in China have more than a hundred times more links than people in
Sweden. Hence, we assume that 𝑝 𝑗𝑡 depends negatively on ℓ 𝑗𝑡 :

ln 𝑝 𝑗𝑡 = ln 𝑝
(
ℓ 𝑗𝑡

)
= 𝛾0 − 𝛾ℓ 𝑗𝑡 , (2)

where 𝛾0 ∈ R and 𝛾 ∈ (0, 1) are parameters (throughout the paper, parameters are denoted by Greek letters). If 𝛾 were 0,
then 𝑝 𝑗𝑡 would be independent of ℓ 𝑗𝑡 and 𝑐 𝑗𝑡 proportional to 𝐿 𝑗𝑡 indeed. If 𝛾 were 1, then 𝑝 𝑗𝑡 would be inversely related to
𝐿 𝑗𝑡 and the expected number of links 𝑐 𝑗𝑡 independent of ℓ 𝑗𝑡 ;3 for all intermediate cases, 𝑐 𝑗𝑡 increases sublinearly in 𝐿 𝑗𝑡 .

Tishby, Biham, and Katzav (2016) show that the right tail of the distribution of 𝑧 converges to Gompertz with complement
distribution function:

Pr
[
𝑧 ≥ 𝑧

]
= exp

(
− e𝑝(ℓ 𝑗𝑡)𝑧 − e𝑝(ℓ 𝑗𝑡)𝑑(ℓ 𝑗𝑡)

𝑝
(
ℓ 𝑗𝑡

) e−𝑝(ℓ 𝑗𝑡)ℎ(ℓ 𝑗𝑡)
)
. (4)

where 𝑑
(
ℓ 𝑗𝑡

)
and ℎ

(
ℓ 𝑗𝑡

)
are functions of ℓ 𝑗𝑡 ≡ ln 𝐿 𝑗𝑡 . Let 𝑑∗

(
ℓ 𝑗𝑡

)
> 𝑑

(
ℓ 𝑗𝑡

)
be the lower bound above which the distribu–

tion of 𝑧 has converged to the Gompertz distribution. Hence, the probability that a random draw from the full distribution

3. As is well known, in this case, the degree distribution converges to Poisson

Pr
[
𝑐 = 𝑐

]
=

e−𝜇𝜇𝑐

𝑐!
(3)

where 𝑐 is a particular realisation of 𝑐 and 𝜇 B E[𝑐] is the mean degree. Clearly, the distribution of 𝑐 is increasing in 𝜇, and is therefore an increasing
function of market size.
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of 𝑧 is drawn from this right tail is:

Pr
[
𝑧 ≥ 𝑑∗

(
ℓ 𝑗𝑡

) ]
= exp

(
− e𝑝(ℓ 𝑗𝑡)𝑑∗ (ℓ 𝑗𝑡) − e𝑝(ℓ 𝑗𝑡)𝑑(ℓ 𝑗𝑡)

𝑝
(
ℓ 𝑗𝑡

) e−𝑝(ℓ 𝑗𝑡)ℎ(ℓ 𝑗𝑡)
)
.

We shall assume that all billionaires have realisations of 𝑧 ≥ 𝑑∗
(
ℓ 𝑗𝑡

)
, such that the distribution of 𝑧 follows Gompertz for

this group. Hence, this lower bound is non-binding for our empirical application and we can ignore it. We present it here
just as a warning that this model cannot be applied for the wealth distribution of the full population, since many people have
realisation of 𝑧 < 𝑑∗

(
ℓ 𝑗𝑡

)
, for whom Gompertz does not apply.

Each individual 𝑖 in region 𝑗 at time 𝑡 “owns” an SAW with length 𝑧𝑖 𝑗𝑡 ; 𝑧𝑖 𝑗𝑡 is her income relative to the average income
𝑌 𝑗𝑡 in region 𝑗 at time 𝑡. Wealthy individuals can capitalize their income into wealth at a global wealth-to-income ratio 𝐾𝑡 .
Individual 𝑖’s wealth𝑊𝑖 𝑗𝑡 is therefore equal to:

𝑊𝑖 𝑗𝑡 = e𝑧𝑖 𝑗𝑡𝑌 𝑗𝑡𝐾𝑡 ⇒ 𝑧𝑖 𝑗𝑡 = 𝑤𝑖 𝑗𝑡 − 𝑦 𝑗𝑡 − 𝑘𝑡 . (5)

Substitution of equation (5) in equation (4) yields:

Pr
[
𝑤 ≥ 𝑤𝑖 𝑗𝑡

]
= exp

(
− e𝑝 𝑗𝑡𝑤𝑖 𝑗𝑡 − e𝑝 𝑗𝑡𝑑 𝑗𝑡

𝑝 𝑗𝑡

e−𝑝 𝑗𝑡ℎ 𝑗𝑡

)
(6)

where

ℎ 𝑗𝑡 B ℎ
(
ℓ 𝑗𝑡

)
+ 𝑦 𝑗𝑡 + 𝑘𝑡 = 𝜂0 + 𝑦 𝑗𝑡 + 𝑘𝑡 + 𝜂ℓ 𝑗𝑡 , (7)

𝑑 𝑗𝑡 B 𝑑
(
ℓ 𝑗𝑡

)
+ 𝑦 𝑗𝑡 + 𝑘𝑡 = 𝛿0 + 𝑦 𝑗𝑡 + 𝑘𝑡 + 𝛿ℓ 𝑗𝑡 . (8)

In the second step, we use linear approximations of ℎ
(
ℓ 𝑗𝑡

)
and 𝑑

(
ℓ 𝑗𝑡

)
; 𝑝 𝑗𝑡 = 𝑝

(
ℓ 𝑗𝑡

)
safisfies equation (2).

For our purpose, it is convenient to denote all variables in billions of nominal US dollars. A billionaire is therefore someone
for whom𝑊𝑖 𝑗𝑡 ≥ 1 or 𝑤𝑖 𝑗𝑡 ≥ 0. Equation (6) implies:

Pr
[
𝑤 = 𝑤𝑖 𝑗𝑡

]
Pr

[
𝑤 ≥ 𝑤𝑖 𝑗𝑡

] = e𝑝 𝑗𝑡 (𝑤𝑖 𝑗𝑡−ℎ 𝑗𝑡) , (9)

Pr
[
𝑤 ≥ 0

]
= exp

(
e𝑝 𝑗𝑡𝑑 𝑗𝑡 − 1

𝑝 𝑗𝑡

e−𝑝 𝑗𝑡ℎ 𝑗𝑡

)
. (10)

Equation (9) is the hazard rate of the distribution of top wealth, equation (10) is the probability that somebody is a billionaire.
These equations provide an appealing interpretation of the roles of 𝑝 𝑗𝑡 , ℎ 𝑗𝑡 , and 𝑑 𝑗𝑡 in our model: 𝑝 𝑗𝑡 is the semi-elasticity
of the hazard rate with respect to𝑤 𝑗𝑡 ; a higher value of 𝑝 𝑗𝑡 corresponds to a faster increase in the hazard rate. Conditional on
𝑝 𝑗𝑡 , ℎ 𝑗𝑡 measures the level of the inverse hazard rate for 𝑤𝑖 𝑗𝑡 = 0; the higher ℎ 𝑗𝑡 , the lower is the hazard rate and the fatter
is the right tail of the distribution of top wealth and the higher expected (log) top-wealth of billionaires. Conditional on 𝑝 𝑗𝑡

and ℎ 𝑗𝑡 , 𝑑 𝑗𝑡 measures the probability that somebody is a billionaire.
The critical difference between the exponential distribution (the distribution of log wealth when wealth itself is distributed

Pareto) and the Gompertz distribution is the shape of hazard rate. To see this, define 𝑎 𝑗𝑡 B e−𝑝 𝑗𝑡ℎ 𝑗𝑡 . The distribution
function for the exponential distribution is obtained by taking the limit 𝑝 𝑗𝑡 → 0 while keeping 𝑎 𝑗𝑡 = e−𝑝 𝑗𝑡ℎ 𝑗𝑡 constant:

lim
𝑝 𝑗𝑡→0

Pr
[
𝑤 ≥ 𝑤𝑖 𝑗𝑡

]
= lim

𝑝 𝑗𝑡→0
exp

(
− e𝑝 𝑗𝑡𝑤𝑖 𝑗𝑡 − e𝑝 𝑗𝑡𝑑 𝑗𝑡

𝑝 𝑗𝑡

𝑎 𝑗𝑡

)
= e−𝑎 𝑗𝑡 (𝑤𝑖 𝑗𝑡−𝑑 𝑗𝑡) .
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The hazard rate of Gompertz and the exponential distribution can therefore be written as:

Pr
[
𝑤 = 𝑤𝑖 𝑗𝑡

]
Pr

[
𝑤 ≥ 𝑤𝑖 𝑗𝑡

] =

{
exponential : 𝑎 𝑗𝑡 = e−𝑝 𝑗𝑡ℎ 𝑗𝑡

Gompertz : 𝑎 𝑗𝑡e𝑝 𝑗𝑡𝑤𝑖 𝑗𝑡 = e𝑝 𝑗𝑡 (𝑤𝑖 𝑗𝑡−ℎ 𝑗𝑡) .

While the hazard rate is constant for the exponential distribution, it is increasing exponentially for the Gompertz distribution.
The Gompertz distribution therefore has a thinner right tail than the exponential distribution. In fact, Gompertz has an even
thinner tail than the Normal distribution, as can be seen from

lim
𝑤→∞

𝑤−1 Pr
[
𝑤 = 𝑤

]
Pr

[
𝑤 ≥ 𝑤

] = lim
𝑤→∞

𝑤−1 𝜙 (𝑤)
Φ (−𝑤) = 1,

where 𝜙 (·) and Φ (·) denote the density and distribution function respectively of the standard Normal distribution. The
hazard rate of the Normal distribution increases linearly with 𝑤 for large 𝑤, while it increases exponentially for Gompertz.
The fact that our empirical results strongly support a Gompertz rather than an exponential distribution for log top-wealth
— and hence a Weibull rather than a Pareto distribution for the level of top-wealth — comes therefore as a surprise, since the
common wisdom holds that top wealth is fat tailed, while the empirical evidence in Teulings and Toussaint (2023) suggests
that log top-wealth is even thinner tailed than the Normal distribution.

The model presented above provides an interpretation of this phenomenon. In the extreme right tail, the size of the
population imposes a capacity constraint on the potential of a dominant supplier to increase its customer base even further
and hence on her ability to increase her wealth. The larger the size of the population, the higher the level of wealth at which
this capacity constraint becomes binding and the more skewed to the right is therefore the distribution of top-wealth.

The moments for 𝑘 > 0 of𝑊 and 𝑤 read:

E
[
𝑊 𝑘

]
= 𝐺

𝑘/𝑝 𝑗𝑡

𝑗𝑡
e𝐺

−1
𝑗𝑡 Γ

(
1 + 𝑘/𝑝 𝑗𝑡 , 𝐺

−1
𝑗𝑡

)
, (11)

E
[
𝑤𝑘

]
= 𝑝−𝑘𝑗𝑡 ℎ

(
𝐺 𝑗𝑡 , 𝑘

)
, (12)

𝐺 𝑗𝑡 B 𝑝 𝑗𝑡e𝑝 𝑗𝑡ℎ 𝑗𝑡 ,

where Γ (·, ·) is the upper incomplete Gamma function and where

ℎ (𝐺, 𝑘) B 𝑘e𝐺
−1

∫ ∞

0
𝑞𝑘−1 exp

(
−𝐺−1e−𝑞

)
d𝑞,

ℎ (𝐺, 1) = e𝐺
−1
Ei

(
𝐺−1) ,

Ei (·) is the exponential integral, see Teulings and Toussaint (2023).

4 Estimation

4.1 Parameter Estimation

Our model of the top wealth distribution has three reduced-form parameters for each economy { 𝑗 , 𝑡}: 𝑝 𝑗𝑡 , ℎ 𝑗𝑡 , and 𝑑 𝑗𝑡 .
The variation in these reduced-form parameters between economies is determined by six structural parameters: the intercepts
𝛾0, 𝜂0, and 𝛿0, and the coefficients 𝛾, 𝜂, and 𝛿 measuring the effect of ℓ 𝑗𝑡 . We first discuss the estimation of the reduced form
parameters 𝑝 𝑗𝑡 , ℎ 𝑗𝑡 , and 𝑑 𝑗𝑡 for each economy and then discuss how we estimate the structural parameters from the variation
in these reduced-form parameters.
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The parameters 𝑝 𝑗𝑡 and ℎ 𝑗𝑡 are estimated by maximum likelihood estimation from the distribution of 𝑤𝑖 𝑗𝑡 for each
{ 𝑗 , 𝑡}, see Teulings and Toussaint (2023) for a more detailed discussion. The density function of the conditional Gompertz
distribution for billionaires reads:

𝑓 (𝑤𝑖 𝑗𝑡 ) = 𝑎 𝑗𝑡exp
(
𝑝 𝑗𝑡𝑤𝑖 𝑗𝑡 − 𝑎 𝑗𝑡

e𝑝 𝑗𝑡𝑤𝑖 𝑗𝑡 − 1
𝑝 𝑗𝑡

)
.

Hence, the log likelihood reads:

𝑁−1
𝑗𝑡 lnL

(
𝑎 𝑗𝑡 , 𝑝 𝑗𝑡

)
= ln 𝑎 𝑗𝑡 + 𝑝 𝑗𝑡𝑤 𝑗𝑡 − 𝑎 𝑗𝑡

e𝑝 𝑗𝑡𝑤 𝑗𝑡 − 1
𝑝 𝑗𝑡

, (13)

where a bar on top of a variable denotes its mean for economy { 𝑗 , 𝑡}: 𝑥 𝑗𝑡 B 𝑁−1
𝑗𝑡

∑
𝑖 𝑥𝑖 𝑗𝑡 , where 𝑁 𝑗𝑡 is the number of

billionaires in economy { 𝑗 , 𝑡}. The first-order condition for 𝑎 𝑗𝑡 reads:

𝑁−1
𝑗𝑡

𝜕 lnL
(
𝑎 𝑗𝑡 , 𝑝 𝑗𝑡

)
𝜕𝑎 𝑗𝑡

= 𝑎−1𝑗𝑡 − 𝑝−1𝑗𝑡
(
e𝑝 𝑗𝑡𝑤 𝑗𝑡 − 1

)
= 0 ⇒ 𝑎̂ 𝑗𝑡 = 𝑝 𝑗𝑡

(
e𝑝 𝑗𝑡𝑤 𝑗𝑡 − 1

)−1
, (14)

where a hat on top of a parameter denotes its maximum likelihood estimator. Substitution of equation (14) in equation (13)
yields the concentrated log likelihood (up to a constant)

𝑁−1
𝑗𝑡 lnL

(
𝑝 𝑗𝑡

)
= ln 𝑝 𝑗𝑡 − ln

(
e𝑝 𝑗𝑡𝑤 𝑗𝑡 − 1

)
+ 𝑝 𝑗𝑡𝑤 𝑗𝑡 .

The first-order condition reads

𝑁−1
𝑗𝑡

d lnL
(
𝑝 𝑗𝑡

)
d𝑝 𝑗𝑡

= 𝑝−1𝑗𝑡 −
𝑤 𝑗𝑡

e𝑝 𝑗𝑡𝑤 𝑗𝑡 − 1
= 0 ⇒ 𝑝 𝑗𝑡 =

e𝑝 𝑗𝑡𝑤 𝑗𝑡 − 1
𝑤 𝑗𝑡

. (15)

We first calculate 𝑝 𝑗𝑡 as the solution to equation (15), then use this solution to calculate 𝑎̂ 𝑗𝑡 as the solution to equation (14)
and to solve ℎ̂ 𝑗𝑡 from ℎ̂ 𝑗𝑡 = −𝑝−1

𝑗𝑡
ln 𝑎̂ 𝑗𝑡 . Finally, we use the solutions for 𝑝 𝑗𝑡 and 𝑎̂ 𝑗𝑡 to solve 𝑑 𝑗𝑡 from equation (10)

𝑑 𝑗𝑡 = 𝑝
−1
𝑗𝑡 ln

(
1 +

𝑝 𝑗𝑡

𝑎̂ 𝑗𝑡

ln
(
𝑁 𝑗𝑡

𝐿 𝑗𝑡

))
, (16)

using the fraction of billionaires in the data𝑁 𝑗𝑡/𝐿 𝑗𝑡 for region 𝑗 at time 𝑡 as an estimate for Pr
[
𝑤 ≥ 0

]
. We use these estimates

for 𝑝 𝑗𝑡 , ℎ 𝑗𝑡 , and 𝑑 𝑗𝑡 to the estimated structural parameters 𝛾0, 𝛾, 𝜂0, 𝜂, 𝛿0, and 𝛿 in equations (2), (7) and (8) by means of
standard linear techniques like OLS or WLS.

4.2 Identification

The model has three reduced-form parameters, 𝑝, ℎ, and 𝑑, which we allow to vary across regions 𝑗 and time 𝑡. Stacking these
parameters across economies, we obtain three vectors 𝒑, 𝒉, and 𝒅. By equation (2), ln 𝑝 𝑗𝑡 varies negatively with log population
size, ℓ 𝑗𝑡 . By equations (7) and (8), the baseline hazard ℎ 𝑗𝑡 and the conditional billionaire probability 𝑑 𝑗𝑡 are directly affected
by log GDP per capita 𝑦 𝑗𝑡 and the log wealth-income ratio 𝑘𝑡 . We gather these covariates into a matrix 𝑿 B

[
ℓ 𝒚 𝒌

]
. We

might need (time or region) fixed effects as well. Compactly, our empirical model can be written as

𝜽 = 𝑿′𝜷 + 𝜻 + 𝝐 , (17)
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where 𝜽 B (ln 𝒑, 𝒉, 𝒅). We potentially allow the set of covariates 𝑿 to vary with the parameter. 𝜻 is a vector of fixed effects,
which can include region fixed effects, year fixed effects, or a constant intercept (if no fixed effects are needed). 𝝐 is an error
term.

Our null hypothesis is that this model can be simplified to:

ln 𝑝 𝑗𝑡 = 𝛾0 − 𝛾ℓ 𝑗𝑡 + 𝜖 𝑝𝑗𝑡
ℎ 𝑗𝑡 = 𝜂0 + 𝑦 𝑗𝑡 + 𝑘 𝑗𝑡 + 𝜖ℎ𝑗𝑡
𝑑 𝑗𝑡 = 𝛿0 + 𝑦 𝑗𝑡 + 𝑘 𝑗𝑡 + 𝜖𝑑𝑗𝑡

where 𝛾 < 0. The motivation for assuming 𝛾 < 0 comes from equation (2), we use log population size ℓ as a proxy for log
network size. The motivation for assuming 𝑦 and 𝑘 to have unit coefficients comes from the assumption of a common income
distribution across 𝑗 and 𝑡. Suppose there is neutral inflation raising both log GDP 𝑦 𝑗𝑡 and log wealth 𝑤 of all billionaires
living in economy { 𝑗 , 𝑡} by some additive constant 𝜋. A unit coefficient implies that this affects neither the number of “real”
(that is: corrected for inflation) billionaires nor the distribution of their log wealth. Alternatively, this assumption states that
the distribution of wealth is independent of log nominal GDP per capita and the log wealth-income ratio. These assumptions
will by and large hold, except that we will have to allow for region fixed effects, since our parsimonious model will not capture
all cross-sectional variation in these reduced-form parameters.

5 Data

We use the Forbes List of Billionaires for the years 2001–2021. The dataset provides the names of billionaires, their net worth,
their country of origin, their age and their citizenship. In the years 2011 to 2021, the dataset also provides information on the
origin of the wealth of the listed billionaires. We classify billionaires according to their citizenship. For most of our exercises,
a classification according to origin would make little difference, except for the country-specific predictions at the very end of
the paper, in Section 7. There, we discuss the impact of this data choice in more detail.

Forbes calculates net worth at the individual level, but aggregates family wealth under one person. Understandably, their
methodology is not fully transparent, as the composition of their list requires idiosyncratic choices for each individual bil–
lionaire. Forbes splits family wealth if each family member has 1bn$ or more after the split. As observed by Piketty (2014),
this is likely to create an upward bias on individual fortunes. Moreover, they use available documentation and sometimes data
provided by billionaires themselves to estimate their net worth. This implies that the number of billionaires is likely to be
underestimated, especially in less developed countries or if wealth is derived from nefarious activities. Nevertheless, we follow
the existing literature which uses rich lists like Forbes, as other sources are likely to underestimate the number of billionaires
(Vermeulen 2016; Novokmet, Piketty, and Zucman 2018; Piketty, Yang, and Zucman 2019; Gomez 2023). For a lack of a
more rigorous account of billionaire wealth, we take the Forbes data as given.

We cluster countries in regions. The guiding principles for this clustering is to merge countries that are geographically
connected and close in terms of GDP per capita. With this in mind we define eighteen regions as geographical units consisting
of one or a small number of countries. As a rough threshold for the minimum number of billionaires for a country or a group
of countries to be considered as a region we use 40 billionaires in 2019. Countries that cannot easily be included in a region are
excluded from the region classification. Hence, the region classification excludes countries with a small number of billionaires
which cannot be easily grouped with other countries. Table 1 gives an overview of these regions.

We proxy mean income by GDP per capita, presuming that depreciation is an approximately fixed share of GDP. Since
we apply ln𝑌 𝑗𝑡 in all equations, a fixed share will only affect the intercept of the regressions. We construct population and
GDP data for all regions and regions for the period 2001–2021 using the World Bank’s population and GDP data. The global
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Table 1: Region Classification & Descriptive Statistics

Region Classification Statistics (2001–2021 Average)

Region Area 𝑌 𝑤 ℓ 𝑁

North America
U.S. 0.822 0.923 19.6 443
Canada 0.678 0.894 17.4 29.2

Europe
Germany 0.651 1.12 18.2 74.1
British Islands U.K. + Ireland 0.682 0.828 18 40.6
Scandinavia Sweden + Denmark + Norway + Finland 0.878 1.17 17.1 30.6
France incl. Monaco 0.605 1.27 18 26.5
Alps Switzerland + Austria + Liechtenstein 0.939 1.05 16.6 25
Italy 0.526 1.01 17.9 24.1

(South)East Asia & Oceania
China excl. Taiwan, incl. Hong Kong 0.089 0.794 21 188
Southeast Asia Thailand + Malaysia + Singapore 0.129 0.923 18.4 31.1
Asian Islands Taiwan + Philippines + Indonesia 0.06 0.727 19.7 38.5
South Korea 0.389 0.673 17.7 18.7
Japan 0.627 0.875 18.7 26.6
Australia 0.754 0.736 16.9 19
India 0.02 0.964 20.9 56.1

Other
Russia 0.151 0.956 18.8 68.8
Brazil 0.128 0.861 19.1 30
Israel+Turkey 0.18 0.585 18.2 36.2

World 0.15 0.896 22.7 1325

Notes: World totals include billionaires from countries not part of the regions. China and India count both as regions and
regions. 𝑁 = total number of billionaires; ℓ is log population; 𝑤 = mean log wealth. GDP per capita 𝑌 is normalized by
the GDP per capita of the U.S. in 2018.
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wealth-income ratio is based on the US because of this country has the largest and most developed capital market and it there–
fore is the centre of the world’s financial system. The ratio is computed as the market capitalization of the US stock market
in at the first of January relative to US GDP. This definition fits the assumptions of our model of a common income distri–
bution. Hence, the income corresponding to the market capitalization at the US stock market is proportional to U.S. GDP.
Clearly, this is a simplification, since part of the market capitalization at the U.S. stock market reflects income earned in other
countries. An alternative for U.S. GDP as the measure of capitalized income would be US dividends. Dividends are more
procyclical than GDP. The choice between both measures is therefore analogous to that between the standard price-to-divi–
dend ratio and Shiller’s Cyclically Adjusted Price Earnings (CAPE) ratio, see Campbell and Shiller (1988a, 1988b). Campbell
and Shiller argue that the standard price-to-dividend ratio is less appropriate. Figure 5 plots the US market capitalisation to
GDP ratio against CAPE. We plot both ratios relative to their value for 2019. Both indices move in parallel, showing tops
during the dot-com bubble in 2001 and the second IT wave after 2017 and troughs after the bursting of the dot-com bubble
in 2003 and after the 2008 financial crisis. This shows that our measure, like the CAPE, is a better measure of the underlying
capitalization possibilities in financial markets than the raw price-dividend ratio.

Figure 5: Trends in Stock Market Capitalization
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Notes: Figure shows the log Cyclically Adjusted Price-Earnings index from Robert Shiller’s website
(http://www.econ.yale.edu/ shiller/data.htm), as well as log US Market Capitalization/US GDP.
Both series have been normalized such that 2019 equals 0.

Table 1 provides summary statistics for all regions and regions. We average all statistics over the 2001–2021 period. We
observe wide heterogeneity. We report GDP per capita (𝑌 ) relative to the U.S. in 2018 for comparability. European regions have
GDP per capita close to or above the U.S.; in contrast, India had on average only 2% of U.S. GDP per capita. Likewise, mean
log wealth 𝑤 varies from less than 0.6 in Israel+Turkey to almost 1.3 in France (Bernard Arnault again). That log population
ℓ varies widely between, say, China and the Alps needs no further comment.
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6 Results

We test the model by running weighted least squares (WLS) regressions for all region-year observations for which the number
of billionaires,𝑁 𝑗𝑡 , is large enough. Concretely, we run our model on observations with𝑁 𝑗𝑡 ≥ 32. In addition, our maximum
likelihood estimates result in some estimates for 𝑝 numerically identical to zero. Were we to take the log of these observations,
they would become very negative indeed, distorting our results. We overcome this by trimming the top and bottom 5% of all
observations.4 We weight observations by the square root number of billionaires,

√︁
𝑁 𝑗𝑡 to increase efficiency. To account for

autocorrelation and potential cross-sectional correlation, we report Driscoll and Kraay (1998) standard errors, which generalize
Newey and West (1987) standard errors to allow for arbitrary spatial correlation as well as autocorrelation. All variables in all
specifications will be demeaned, such that the intercept can be interpreted as the average effect.

We begin with our regressions on ln 𝑝 𝑗𝑡 , reported in Table 2. Column (1) begins by testing all variables in 𝒙. Recall our
hypothesis: Only log population ℓ should matter for ln 𝑝 𝑗𝑡 , and the coefficient should be negative. This hypothesis is clearly
supported by the data. All other variables are insignificant, and a formal 𝐹-test accepts the restriction that they are jointly
zero. We therefore can restrict ourselves to our hypothesized model in column (2), with only log population. The coefficient
is stable, going from −0.32 to −0.28.

We then sequentially test whether adding fixed effects significantly improves the model fit. Column (3) reports the results
of adding time fixed effects. The restriction that these effects are jointly insignificant is upheld (𝐹-test value of 1.782). The
coefficient on log GDP per capita remains insignificant (the log wealth-income ratio drops out). Hence, our minimalist model
does not need time fixed effects. This is rather different for region fixed effects, as shown in columns (5) and (6). The 𝐹-statistic
of 8.4 is clearly significant. We can also directly observe from the significant reduction in the RMSE and the improved 𝑅2 that
region fixed effects significantly improve the model fit. The coefficients on log GDP per capita and the log wealth-income
ratio remain insignificant. More concerning is the fact that log population, while significant, has flipped sign and increased
by an order of magnitude. This is not easy to interpret; it indicates that within-region variation in the level of log population
has a positive association with ln 𝑝 𝑗𝑡 . Conceptually, if we only would use within-region variation, it would make more sense
to evaluate the effect of a change in log population. This is what we do in column (8), where we time-average all variables,
and then run a cross-sectional regression. Since there is no cross-sectional variation in 𝑘 , this variable drops out. We observe
that the cross-sectional relationship between log population and ln 𝑝 𝑗𝑡 are again as predicted, given by the coefficient on the
time-averaged ℓ 𝑗 . Moreover, the deviations from the cross-sectional averages, ℓ̃ 𝑗𝑡 , show up positively and significantly, and
are quantitatively similar to the results found in columns (5) and (6) with region fixed effects. We conclude that the main
predictions of our model hold.

Next, we study the results for the conditional inverse baseline hazard, ℎ. In calculating ℎ, using the procedure described
in Section 4, we use the fitted values of 𝑝 𝑗𝑡 from Table 2, column (9).

Table 3 reports the results of regressing our fitted ℎ̂ 𝑗𝑡 on 𝒙. Our hypothesis was that log GDP per capita and log market
capitalisation solely determine ℎ̂ 𝑗𝑡 , both with unit coefficients. Column (1) shows that this does not quite hold. The coefficient
on market capitalisation is indeed close to 1, but the coefficient on log GDP per capita is much lower, at 0.33. Log population
does enter insignificantly, as predicted. In column (2), we therefore drop log population. The coefficient on log GDP per
capita now increases to 0.41, which still far from 1. The 𝐹-test therefore does reject the restriction that they are jointly equal
to 1. We proceed by imposing the unit coefficient restriction. Column (3) reveals that the RMSE does go up substantially,
highlighting that this restriction does not help our model fit.

We test the inclusion of fixed effects. Column (4) shows that time fixed effects again are not jointly significant (𝐹-stat
of 0.9). Log population remains insignificant. As before, log market cap drops out of columns (4) and (5). The remaining

4. The observations dropped by this trimming are: The U.S. in 2003 and 2005; the British Islands in 2007 and 2013; the Alps in 2015, 2017, 2018, 2019,
and 2020; China in 2009, 2011, and 2012; South Korea in 2019 and 2021; Japan in 2021; India in 2010; Russia in 2006 and 2009; and Israel+Turkey in
2011.
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Table 2: Regressions on ln 𝑝 𝑗𝑡

Dependent Variable: ln 𝑝 𝑗𝑡

Model: (1) (2) (3) (4) (5) (6) (7)

Variables
Constant -1.2∗∗∗ -1.2∗∗∗ 3.8∗∗∗

(0.06) (0.05) (0.77)

ℓ 𝑗𝑡 -0.32∗∗∗ -0.28∗∗∗ -0.29∗∗∗ -0.28∗∗∗ 6.8∗ 7.2∗∗
(0.07) (0.04) (0.05) (0.04) (2.7) (2.1)

𝑦 𝑗𝑡 -0.08 -0.03 0.14
(0.06) (0.03) (0.27)

𝑘𝑡 0.57 -0.006
(0.32) (0.50)

ℓ 𝑗 -0.28∗∗∗
(0.04)

ℓ̃ 𝑗𝑡 5.9∗∗∗
(1.5)

Weights
√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

Fixed-effects
Year ✓ ✓
Region ✓ ✓

Fit statistics
Observations 173 173 173 173 173 173 173
R2 0.221 0.189 0.365 0.363 0.613 0.612 0.307
Within R2 0.224 0.222 0.208 0.206
RMSE 2.05 2.09 1.85 1.85 1.44 1.45 1.93
𝐹-test (only ℓ ≠ 0) 1.953 1.175 0.246
𝐹-test (FE) 1.782 8.408∗∗∗

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Driscoll-Kraay standard errors in parentheses. ℓ 𝑗𝑡 = log population, 𝑦 𝑗𝑡 = log GDP per capita, 𝑘𝑡 = log
global wealth-income ratio. Column (7) splits log population ℓ 𝑗𝑡 in a region-specific average ℓ 𝑗 B 𝑇−1

𝑗

∑𝑇𝑗

𝑡 ℓ 𝑗𝑡 ,
and deviations from that mean ℓ̃ 𝑗𝑡 B ℓ 𝑗𝑡 − ℓ 𝑗 .
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Table 3: Regressions on ℎ̂ 𝑗𝑡

Dependent Variable: ℎ̂ 𝑗𝑡

Model: (1) (2) (3) (4) (5) (6)

Variables
Constant 0.36∗∗∗ 0.31∗∗∗

(0.07) (0.06)

𝑦 𝑗𝑡 0.33∗ 0.41∗∗ 0.36∗ 0.44∗∗∗ 0.56 0.66
(0.14) (0.11) (0.13) (0.10) (0.73) (0.71)

𝑘𝑡 1.1∗∗ 1.1∗∗ 1.2∗ 1.3∗∗
(0.33) (0.31) (0.48) (0.44)

ℓ 𝑗𝑡 -0.13 -0.12 1.5
(0.07) (0.07) (2.2)

Weights
√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

Fixed-effects
Year ✓ ✓
Region ✓ ✓

Fit statistics
Observations 173 173 173 173 173 173
R2 0.253 0.238 0.324 0.312 0.711 0.710
Within R2 0.252 0.238 0.245 0.242
RMSE 2.67 2.69 2.53 2.56 1.66 1.66
𝐹-test (ℓ = 0) 2.993 2.983 0.481
𝐹-test (𝑦 = 𝑘 = 1) 11.759∗∗∗ 13.68∗∗∗ 25.122∗∗∗ 29.429∗∗∗ 0.176 0.244
𝐹-test (FE) 0.903 26.918∗∗∗

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Driscoll-Kraay standard errors in parentheses. ℓ 𝑗𝑡 = log population, 𝑦 𝑗𝑡 = log GDP per capita, 𝑘𝑡
= log global wealth-income ratio.
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covariate, log GDP per capita, has similar coefficients to columns (1) and (2), and hence is far from 1. Column (6) shows that
region fixed effects are highly significant. Again, log population is insignificant. Interestingly, the coefficient in log GDP per
capita has now increased further (although insignificant), and cannot statistically be distinguished from 1. Hence, our 𝐹-test
on our restriction is now accepted. In columns (8) and (9), we again time-average all variables to create a purely cross-sec–
tional regression. Here again, log population is insignificant, but log GDP per capita is far from one. Therefore, our model
predictions for ℎ only hold if we rely on region fixed effects.

Table 4: Regressions on 𝑑 𝑗𝑡

Dependent Variable: 𝑑 𝑗𝑡

Model: (1) (2) (3) (4) (5) (6)

Variables
Constant 1.6∗∗∗ 1.6∗∗∗

(0.009) (0.009)

𝑦 𝑗𝑡 0.89∗∗∗ 0.88∗∗∗ 0.89∗∗∗ 0.89∗∗∗ 1.2∗∗∗ 1.1∗∗∗
(0.01) (0.008) (0.009) (0.007) (0.08) (0.07)

𝑘𝑡 0.74∗∗∗ 0.74∗∗∗ 0.88∗∗∗ 0.82∗∗∗
(0.07) (0.07) (0.06) (0.05)

ℓ 𝑗𝑡 0.01 0.01 -0.60
(0.009) (0.008) (0.57)

Weights
√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

√
𝑁

Fixed-effects
Year ✓ ✓
Region ✓ ✓

Fit statistics
Observations 173 173 173 173 173 173
R2 0.927 0.927 0.930 0.930 0.987 0.987
Within R2 0.926 0.926 0.879 0.877
RMSE 0.831 0.832 0.814 0.815 0.345 0.347
𝐹-test (ℓ = 0) 1.965 1.561 1.080
𝐹-test (𝑦 = 𝑘 = 1) 52.548∗∗∗ 108.59∗∗∗ 125.91∗∗∗ 236.76∗∗∗ 2.739 5.589∗
𝐹-test (FE) 0.415 69.594∗∗∗

Signif. Codes: ***: 0.001, **: 0.01, *: 0.05
Notes: Driscoll-Kraay standard errors in parentheses. ℓ 𝑗𝑡 = log population, 𝑦 𝑗𝑡 = log GDP per capita, 𝑘𝑡 = log
global wealth-income ratio.

Finally, we test our hypotheses for the conditional billionaire probability 𝑑 𝑗𝑡 . Like ℎ 𝑗𝑡 , this parameter should solely be
determined by log GDP per capita and log market capitalisation, with unit coefficients. Unlike our results for ℎ̂ 𝑗𝑡 , this restric–
tion is upheld much more easily for d̂ 𝑗𝑡 . We use the fitted values for ℎ̂ 𝑗𝑡 from Table 3, column (9) to calculate 𝑑 𝑗𝑡 . The results
are reported in Table 4. Column (1) shows that both variables of interest have highly significant coefficients that are close to
1. A formal 𝐹-test rejects the restriction that they equal 1. This is unsurprising, since these coefficietns are highly precisely
estimated, since the variation in billionaire probabilities is very large across regions and years. This is in contrast to variation
in mean (log) wealth, which essentially is the variation used to identify ℎ 𝑗𝑡 . Hence, we cannot formally accept our restriction,
but in magnitudes it almost holds. Log population shows up insignificantly, as hypothesized. We proceed as before. In col–
umn (2), we drop log population. The resulting coefficients for log GDP per capita and log market capitalisation are barely
changed.
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We sequentially add fixed effects as before. Time fixed effects are again not needed, see column (3). Column (5) shows, as
before, that region fixed effects are needed. However, it is interesting to note that although the RMSE drops significantly, the
𝑅2 only marginally increases, having been very high even in the non-saturated specifications. This suggests that our simple
model without region fixed effects does have strong explanatory power. In columns (5) and (6), we revisit our restrictions,
like we did for ℎ̂ 𝑗𝑡 . We again find that region fixed effects suffice to make all restrictions hold in column (5). In column (6),
the 𝐹-test is marginally significant at the 5% level. Finally, the cross-sectional regressions confirm these findings. Log GDP
per capita cannot be statistically distinguished from 1, and log population remains insignificant throughout. The 𝑅2 in the
cross-sectional regressions is strikingly large, reflecting that variations in the billionaire probability are sufficiently large to make
our model precisely estimated.

Our hypotheses for 𝑝 𝑗𝑡 are easily upheld, while those for ℎ 𝑗𝑡 and 𝑑 𝑗𝑡 only hold with region fixed effects. We do see that
our hypothesis more closely holds for 𝑑 than for ℎ. This suggests that our model works well for the conditional billionaire
probability, but less so for the conditional inverse baseline hazard.

7 Accounting for Billionaire Growth

In this section, we test the implications of our model and regression results, both on the level of individual countries and on
a global level. First, we test our model on individual countries. We begin by re-estimating all equations at the country level,
using the coefficients found before. Specifically, we use a country-year-level 𝑝 𝑗𝑡 = exp

(
−1.2 − 0.28ℓ 𝑗𝑡

)
, the fitted value of

Table 2, column (2). Then, we use this 𝑝 to calculate an observation-specific 𝑑, which we decompose into a fixed effect (𝑑 𝑗 )
and the contributions of log GDP per capita 𝑦 and log market capitalisation 𝑘 , both with unit coefficients. With 𝑝 and 𝑑, we
calculate ℎ as outlined in Section 4, which we decompose like 𝑑 into a fixed effect ℎ 𝑗 and the contributions of 𝑦 and 𝑘 with
unit coefficients.

Once we have country-specific estimates for our parameters, we can test the model implications and compare them to
the data. We will look at three key moments: the fraction of the population which is a billionaire (expressed in millions of
population), mean log wealth, and mean wealth. To calculate these moments, we use equations (10), (11) and (12). Since we
re-estimate all parameters at the country level, these moments should fit very well. The reason is that the billionaire probability
is used to estimate ℎ, and transformed mean log wealth is part of the estimate of 𝑝, see equation (15). However, mean wealth
in levels is untargeted, so our model need not necessarily fit this moment well.

Table 5 shows our model predictions, where we take the 2001–2021 average of our model predictions and compare them
to the averaged empirical data. The model in general fits really well. The billionaire probability is a function of 𝑝, 𝑑, and
ℎ. Since the latter two parameters contain fixed effects (re-estimated at the country level), the close fit should not be a great
surprise. Divergence between predicted and fitted values can be seen most clearly in countries where the probability increased
strongly over time, like Hong Kong. In those cases, our model tends to underperform somewhat.

Mean log wealth is a function of 𝑝 and 𝑑. Since 𝑑 is estimated with the empirical likelihood (and later decomposed into
fixed effects and covariates), the extremely close fit should again not be a surprise. Nevertheless, it is worthwhile to note that
rival models fail to predict mean log wealth with the same accuracy, see Teulings and Toussaint (2023) for a comparison with
the Pareto distribution.

The final moment is unmatched, mean wealth. Here, we are heartened by a strong fit for most cases. The model overpre–
dicts for some countries (i.e., France), and underpredicts for others (Mexico). An interpretation here is that French billionaires
are less wealthy than they “should be” given fundamentals, while Mexican billionaires are wealthier than they should. The
presence of Carlos Slim may matter here, but it is interesting that Bernard Arnault skews the data less than the model.

We should note that we have grouped billionaires here by citizenship, not by country of birth. This may matter in some
cases, in particular for countries which have institutional features making them attractive to high-net worth individuals. We
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Table 5: Predictions versus Realizations, 2001–2021 Average

Pr
[
𝑤 ≥ 0

]
E

[
𝑤
]

E
[
𝑊

]
Fixed Effects

Country Model Data Model Data Model Data ℎ 𝑑

Australia 0.673 0.756 0.708 0.722 2.61 2.55 0.323 0.752
Brazil 0.122 0.14 0.83 0.858 3.23 3.24 0.984 -0.349
Canada 0.769 0.787 0.871 0.893 3.43 3.33 0.996 0.968
China 0.0516 0.0956 0.55 0.496 2.06 2.04 -0.267 -0.517
France 0.341 0.36 1.26 1.33 6.87 6.32 2.62 0.925
Germany 0.831 0.865 1.07 1.12 4.86 4.28 1.88 1.41
Hong Kong 4.87 5.2 1.04 1.07 4.62 4.41 1.87 2.57
India 0.0335 0.0401 0.89 0.964 3.62 3.9 1.38 -1.97
Italy 0.366 0.383 0.97 1.02 4.06 3.93 1.44 0.557
Japan 0.199 0.2 0.863 0.876 3.36 3.18 0.877 -0.16
Mexico 0.107 0.108 1.18 1.2 5.98 7.21 2.29 -0.719
Russia 0.405 0.462 0.927 0.949 3.86 3.78 1.47 0.832
South Korea 0.283 0.345 0.619 0.672 2.26 2.36 -0.21 0.144
Spain 0.356 0.369 0.83 0.81 3.19 3.95 0.793 0.357
Sweden 1.51 1.58 1.26 1.45 6.9 6.54 2.66 2.28
Switzerland 2.08 2.18 0.969 1.08 4.08 3.47 1.52 1.87
Taiwan 0.772 0.867 0.706 0.775 2.6 2.53 0.256 0.798
Turkey 0.257 0.309 0.419 0.463 1.67 1.75 -1.87 -0.25
United Kingdom 0.519 0.535 0.798 0.801 3.02 2.81 0.62 0.562
United States 1.35 1.37 0.917 0.911 3.72 3.91 1.2 1.4

Notes: Model predictions are made with a 𝑝 𝑗𝑡 fitted using Table 2, column (2); values for ℎ 𝑗𝑡 using this fitted
𝑝 𝑗𝑡 , decomposed into fixed effects and 𝑦 and 𝑘 with unit coefficients; and 𝑑 𝑗𝑡 using these fitted 𝑝 𝑗𝑡 and ℎ̂ 𝑗𝑡 ,
decomposed into fixed effects and 𝑦 and 𝑘 with unit coefficients. The probability of billionaires is expressed per
millions of population. The fixed-effect components of parameters ℎ and 𝑑 are demeaned.
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can for instance interpret the large positive Switzerland fixed effect in this regard.
Finally, we turn to the global change in these three moments. We first re-estimate all parameters at a global level, analogous

to the country-specific exercises above. This gives us predictions for each moment. In Table 6, Panel A, we report the predicted
value for our first year (2001), and the last (2021). We see that our model fits the global data very well. It slightly overpredicts
the billionaire fraction in 2001 (0.11 billionaires per million people instead of 0.09), but underpredicts the fraction in 2021
(0.3 vs 0.35). It fits mean log wealth extremely well (0.79 vs 0.8 in 2001, and 1.05 vs 1.04 in 2021). The initial value for mean
wealth is underestimated (2.9 vs 3.2); however, the final value matches very closely (4.7 vs 4.75).

Table 6: Decomposition of the Change in Billionaire Numbers and Mean (Log) Wealth, 2001–2021

Value 2001 Value 2021 Δ Δℓ Δ𝑦 Δ𝑘 𝜀

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: World

Pr
[
𝑤 ≥ 0

]
0.087 0.113 0.349 0.294 0.262 0.181 -0.007 0.121 0.048 0.018

E
[
𝑤
]

0.809 0.789 1.04 1.05 0.232 0.259 0.01 0.174 0.076 -0.000

E
[
𝑊

]
3.21 2.94 4.75 4.68 1.54 1.74 0.076 1.01 0.399 0.25

Panel B: United States

Pr
[
𝑤 ≥ 0

]
0.944 1.1 1.85 2.09 0.908 0.989 -0.024 0.623 0.306 0.085

E
[
𝑤
]

0.793 0.863 1.04 1.04 0.25 0.182 0.004 0.117 0.06 0.001

E
[
𝑊

]
3.37 3.34 4.8 4.64 1.43 1.3 0.047 0.75 0.364 0.139

Notes: Columns (1) and (3) give the first and last values of the empirical moments, and columns (2) and (4) do the same for the
model-implied moments. Columns (5)–(6) give the absolute change (Δ). The model-implied change (6) is decomposed into
a component due to log population (Δℓ), log GDP per capita (Δ𝑦) and log market capitalisation (Δ𝑘), in columns (7)–(9).
Since the moments are non-linear, the decomposition is not exact, with the unexplained residual denoted 𝜀. Panel A does this
exercise for all billionaires worldwide, while Panel B concentrates on the United States.

We do an accounting exercise, where we decompose the model-implied change between in 2001 and 2021 into components
due to population change, a change in global GDP per capita, and a change in the global stock market, holding the other
variables fixed. Consider for instance the billionaire fraction. The data show an increase from 0.09 to 0.35; our model implies
an increase from 0.11 to 0.3, or 0.19 points. We can decompose this increase of 0.19 into the three variables. For instance, a
change in population alters 𝑝, with negative coefficient -0.28 per log point increase. A change in 𝑝 subsequently alters 𝑑 and
therefore also ℎ. We can therefore calculate a counterfactual value for the billionaire fraction in where we use the 2021 value
for population in these calculations but keep all other variables fixed at their 2001 values. Call this counterfactual moment
Pr♯

ℓ
. The contribution of population size to the increase in billionaire numbers is then given as Δℓ = Pr♯

ℓ
− Pr♮ , where the

natural sign ♮ indicates the 2001 model prediction. The contributions of 𝑦 and 𝑘 follow analogously. Since the moments are
highly non-linear, these variables interact in the model predictions. This means that our additive decomposition is not exact;
changing one variable at a time while holding the others fixed does not add up to the full model-implied value. We denote the
residual by 𝜀; we can also think of this as an interaction term between the three variables.

Table 6 reports the results. The change in predicted moments is almost entirely driven by the increase in global GDP per
capita, explaining 0.121/0.181 = 66.8% of the increase in the billionaire fraction, 67.2% of the increase in mean log wealth
and 58% of the increase in mean wealth. The log market capitalisation factor 𝑘 also contributed positively, and accounts for a
respective 26.5%, 29.2% and 22.9% of the change in the moments. In contrast, the contribution of Δℓ is very small and even
slightly negative for the billionaire fraction. This is because in our model, population has two offsetting effects: a direct effect
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(a decrease in 𝑝) and the indirect effects (the resulting increases in 𝑑 and ℎ).5 The decomposition shows that these effects work
against each other, resulting in small net effects. In contrast, GDP per capita and market capitalization have unambiguously
signed effects (one-for-one increases in 𝑑 and ℎ). Of the two, GDP per capita mattered much more in our sample.

We also investigate the dynamics of billionaire increases in the United States. This is reported in panel B of Table 6. Here,
we do not re-estimate the equations and fixed effects, instead taking the values from Table 5. Nevertheless, columns (1)–(4)
reveal that the predicted values remain very close to the data. The billionaire probability is slightly overestimated both at the
beginning and end of our sample period, but the resultant predicted increase is therefore close to the actual increase. The
billionaire probability doubled between 2001 and 2021, both in the data and in our model. The model attributes almost two
thirds of this increase to the change in U.S. GDP per capita. Around 30% comes from the change in the wealth-income ratio.
Population has a net negative effect, like in Panel A. The residual or interaction term is comparable to that in Panel A, and
makes up almost 10% of the increase.

The predictions for mean log wealth and mean wealth again show a dominant role for GDP per capita, a secondary role
for the wealth-income ratio, and a negligible role for population. The residual term for mean wealth is relatively sizable, like
in Panel A, suggesting that interactions matter much more for wealth in levels than in logs.

As a final exercise, we investigate the impact of the scale effect of population. To do so, we take China and Sweden in
2019, countries with vastly different populations. We calculate the mean 𝑝 𝑗𝑡 among observations in 2019, and calculate the
country-specific values for 𝑝 𝑗𝑡 (and hence ℎ 𝑗𝑡 ) in deviations from that mean. This results in a China-specific value of 𝑝China =
0.07 and a Sweden-specific value of 𝑝Sweden = 0.29. Then, we investigate what would happen to each country’s hazard rate if
they had the other country’s values for 𝑝 and ℎ. Since ℎ depends on𝑤, this swapping will not result in exactly identical hazard
rates.

Figure 6: Population Scale Effects in Hazard Rates, China and Sweden
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Notes: Figures show the model-implied hazard rates for China and Sweden in 2019, contrasted with hazard rates where the
values for 𝑝 𝑗𝑡 and ℎ 𝑗𝑡 are taken from the other country.

Figure 6 plots the results. The scale effects in the hazard rates are strong. China, with Sweden’s parameters, would have a
much higher hazard rate, implying that it would have far fewer super-wealthy billionaires relative to “ordinary” billionaires. For
Sweden, the picture is reversed: China’s parameters imply a much longer and fatter upper right tail. Swapping the parameters
does not result in identical hazard rates; the baseline hazards start at different values (around 0.75 for model-implied China in

5. There is an additional channel which works through the denominator, i.e., total population in millions. In results available on request, we have also
analyzed the number of billionaires directly, eliminating this denominator effect. The results are qualitatively identical to those reported in Table 6, suggesting
that the denominator effect is second-order.
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panel 6a and slightly above 1 for counterfactual Sweden), and the counterfactual hazard rates are steeper. This implies that the
interaction with log wealth is also important in determining the fit of the model.

8 Interpretation

Our most robust finding is that the semi-elasticity of the wealth hazard rate, 𝑝 𝑗𝑡 , is declining in log population. In other words,
more populous countries have longer upper tails of the wealth distribution. We can interpret this result using two kinds of
models. First, in heterogeneous-firm models with fixed entry costs à la Melitz (2003), firm profits increase in population size.
However, a population increase does not benefit all firms equally; most of the gains go to the upper tail of the firm productivity
distribution. Hence, an increase in ℓwould cause an increase in mean productivity but also an increase in inequality. Translated
to firm owners, the implications are clear.

An even stronger association is found in endogenous growth models. As reviewed in Jones (2022), essentially all models
in this literature predict population to have a positive effect on the number of ideas and hence technological change.6 If
we interpret the number of nodes 𝐿 as the number of ideas that can be successfully embodied into output, the link with
endogenous growth models follow naturally. Our setup, however, is slightly artificial in that it is static: the network is formed
at the dawn of time and never changes. This implies, among other things, that once an individual is rich (has accumulated
many ideas), he never drops out. This seems to sharply contrast with Schumpeterian models in the vein of Aghion and Howitt
(1992), where incumbent firms (and hence their owners’ wealth) are constantly cannibalized by more successful upstarts.

We think that a dynamic extension of our model could resolve this tension, where each period links can also disappear with
some probability (and new links can also be formed).7 We conjecture that such a model would feature many of the dynamics
that are congruent to Schumpeterian models; yet in each snapshot { 𝑗 , 𝑡} the distribution of Self-Avoiding Walks would still
be Gompertz. Naturally, individual entrepreneurs might drop out (their links get broken) and others take their place. Hence,
our model is a description of the cross-sectional distribution in a region in a point in time, and not a model of the trajectory
of individual billionaires. We view an extension of our model along these lines as a fruitful avenue for future research.

6. There is some difference between fully endogenous growth models such as Romer (1990) or Aghion and Howitt (1992) and semi-endogenous growth
models such as Jones (1995) and Kortum (1997). In the latter category, population growth has level effects, while in the former, population growth increases
the growth rate of technological change.

7. For instance, agents might enter and leave the network at some Poisson rate 𝜆, as in Akbarpour, Li, and Gharan (2020).
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